158
D. TANINI ET AL.
as hydrogen bond donor and the counter anion as hydrogen
acceptor, solvent effects, as well as their basic or acid charac-
ter.12 Therefore various factors can affect either thionation and
cycloaddition, as well as the behaviour of ILs as promoters of
such reactions. These effects are at present not fully understood,
and further investigations will be necessary.
(c) Segi, M.; Nakajima, T.; Suga, S.; Murai, S.; Ryu, L.; Ogawa, A.; Son-
oda, N. J. Am. Chem. Soc. 1988, 110, 1976–1978 and references cited
therein.
7. For some examples: (a) Martins, M. A. P.; Frizzo, C. P.; Tier, A. Z.;
Moreira, D. N.; Zanatta, N.; Bonacorso, H. G. Chem. Rev. 2008, 108,
2015–2050. (b) Wasserscheid, P.; Welton, T. (eds.) Ionic Liquids in Syn-
thesis, Wiley-VCH, 2nd Edition, 2007. ISBN: 978-3-527-31239-9 and
references cited. (c) Sheldon, R. Chem. Commun. 2001, 2399–2407. (d)
Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772–3789.
(e) Welton, T. Chem. Rev. 1999, 99, 2071–2083.
Conclusions
8. For some examples of organochalcogens in ILs: (a) Zimmermann, E.
G.; Thurow, S.; Freitas, C. S.; Mendes, S. R.; Perin, G.; Alves, D.; Jacob,
R. G.; Lenardão, E. J. Molecules 2013, 18, 4081–4090. (b) Thurow,
S.; Ostosi, N. T.; Mendes, S. R.; Jacob, R. G.; Lenardão, E. J. Tetra-
hedron Lett. 2012, 53, 2651–2653. (c) Lenardão, E. J.; Borges, E. L.;
Mendes, S. R.; Perin, G.; Jacob, R. G. Tetrahedron Lett. 2008, 49, 1919–
1921.
In summary, we have shown that direct formation of thioalde-
hydes, and their trapping with dienes, are possible using ionic
liquids as solvents under mild conditions, through reaction of
silyl sulfide with aldehydes. Further studies to extend the thion-
ation to different carbonyl compounds and to try to elucidate the
interaction between the ionic liquids and the substrates are now
under investigation.
9. Typical procedure. A mixture of 0.5 mL of ionic liquid (maintained
under high vacuum prior to use), benzaldehyde (30 mg, 0.28 mmol)
and 2,3-dimethyl-1,3-butadiene (46 mg, 0.56 mmol) was treated
under inert atmosphere at room temperature with HMDST (100 mg,
0.56 mmol) and CoCl2·6H2O (14 mg, 0.056 mmol) (or TfOTMS,
12 mg, 0.056 mmol). The progress of the reaction was monitored by
TLC (petroleum ether/diethyl ether 10:1). After completion of the
reaction (2–3 h), the mixture was diluted with diethyl ether. The
organic phase was then washed with NH4Cl (3×1 mL) and extracted
with diethyl ether (3×2 mL). The combined organic phases were
dried over Na2SO4 and the solvent was evaporated under vacuum.
TLC purification (petroleum ether/diethyl ether 50:1) afforded 44 mg
(78%) of 4,5-dimethyl-2-phenyl-3,6-dihydro-2H-thiopyran 2a.5c 4,5-
dimethyl-2- (4- (trifluoromethyl)-phenyl)-3,6-dihydro-2H-thiopyran
2b. 1H NMR (200 MHz, CDCl3), δ (ppm): 1.73 (3H, s), 1.77 (3H,
s), 2.45–2.55 (2H, m), 2.91 (1H, bd, J = 16.8 Hz), 3.42 (1H, bd, J =
16.8 Hz), 4.02 (1H, dd, J = 8.4 Hz, 4.5 Hz), 7.45 (2H, ap d, J = 8.3 Hz),
7.61 (2H, ap d, J = 8.3 Hz). MS, m/z (Irel, %): 272 (26) [M+], 239 (16),
190 (59), 82 (100). 4,5-dimethyl-2- (2- (trifluoromethyl)phenyl)-3,6-
dihydro-2H-thiopyran 2c. 1H NMR (200 MHz, CDCl3), δ (ppm): 1.72
(3H, s), 1.74 (3H, s), 2.33–2.51 (2H, m), 2.93 (1H, bd, J = 17.0 Hz), 3.44
(1H, d, J = 17.0 Hz), 4.16 (1H, dd, J = 10.0 Hz, 4.5 Hz), 7.30–7.38 (1H,
m), 7.50–7.56 (1H, m), 7.79–7.83 (1H, m), 7.95–8.01 (1H, m). MS, m/z
(Irel, %): 272 (24) [M+], 239 (12), 190 (62), 82 (100).
10. The same thionation reaction was performed using as a medium the
recovered IL/catalyst system just by adding more reagents, without
the addition of more catalyst. Under these conditions the formation
of the product 2a was observed, even if in lower yield.
11. For some examples: (a) Yadav, J. S.; Reddy, B. V. S.; Chetia, L.; Srini-
vasulu, G.; Kunwar, A. C. Tetrahedron Lett. 2005, 46, 1039–1044. (b)
Meracz, I.; Oh, T. Tetrahedron Lett. 2003, 44, 6465–6468. (c) Fisher,
T.; Sethi, A.; Welton, T.; Woolf, J. Tetrahedron Lett. 1999, 40, 793–
796. (d) Earle, M. J.; McCormac, P. B.; Seddon, K. R. Green Chem. 1999,
1, 23–25.
Funding
Financial support from MiUR, National Project PRIN 2010–2011 “Processi
ossidativi e radicalici: aspetti innovativi ed applicazioni allo sviluppo di
biopolimeri melanici e antiossidanti di rilevanza biomedica e tecnologica
(PROxi)” is gratefully acknowledged.
References
1. (a) Borlinghaus, J.; Albrecht, F.; Gruhlke, M. C. H.; Nwachukwu, I.;
Slusarenko, A. J. Molecules 2014, 19, 12591–12618. (b) Y. Cui, Y.; Paul
E.; Floreancig, P. E. Org. Lett. 2012, 14, 1720–1723.
2. Gnanambal, K. M. E.; Patterson, J.; Patterson, E. J. K. Phytoter. Res.
2015, 29, 554–560.
3. (a) Hayashi, S.; Hashimoto, S.; Kameoka, H.; Sugimoto, K. In: A. D.
Swift (Ed.), Flavours and Fragrances, Woodhead publishing limited,
1997 and references cited. (b) Shankaranarayana, M. L.; Raghavan, B.;
Abraham, K. O.; Natarajan, C. P.; & H. H. Brodnitz, H. H. C R C Critical
Reviews in Food Technology 1974, 4, 395–435.
4. See for example: (a) Mareshchenko, A. S.; Ivanov, A. V.; Baranovskii,
V. I.; Mloston, G.; Rodina, L. L.; Nikolaev, V. A. Beilstein J. Org. Chem.
2015, 11, 504–513. (b) Okuma, K. Sulfur Reports 2002, 23, 209–241
and references cited. (c) Li, G. M.; Niu, S.; Segi, M.; Tanaka, K.; Naka-
jima, T.; Zingaro, R. A.; Reibenspies, J. H.; Hall, M. B. J. Org. Chem.
2000, 65, 6601–6612. (d) Boger, D. L.; Weinreb, S. N. In: Hetero Diels-
Alder methodology in organic synthesis, Academic Press: London, 1987.
5. (a) Capperucci, A.; Tanini, D. Phosphorus, Sulfur Silicon Relat. Elem.
2015, 190, 1320–1338 and references cited. (b) Degl’Innocenti, A.;
Capperucci, A.; Castagnoli, G.; Malesci, I. Synlett 2005, 1965–1983 and
references cited. (c) Capperucci, A.; Degl’Innocenti, A.; Ricci, A.; Mor-
dini, A.; Reginato, G. J. Org. Chem. 56, 1991, 7323–7328.
12. (a) Hunt, P. A.; Ashwortha, C. R.; Matthews, R.P. Chem. Soc. Rev. 2015,
44, 1257–1288. (b) Chiappe, C.; Malvaldi, M.; Pomelli, C. S. Green
Chem. 2010, 12, 1330–1339.
6. (a) Shabana, R.; Rasmussen, J.B.; Lawesson, S.-O. Bull. Soc. Chim. Belg.
1981, 90, 75–82. (b) Paquer, D. Int. J. Sulfur Chem. (B) 1972, 7, 269.