Paracyclophanes in Action: Asymmetric Catalytic Dialkylzinc Addition to Imines Using [2.2]Paracyclophane-based N,O-Ligands
Table 2. Substrate scope[a]
References
[1] For reviews on (catalytic) asymmetric additions to imines,
see: a) D. Enders, U. Reinhold, Tetrahedron: Asymmetry
1997, 8, 1895; b) R. Bloch, Chem. Rev. 1998, 98, 1407; c) S.
Kobayashi, H. Ishitani, Chem. Rev. 1999, 99, 1069; d) S. E.
Denmark, O. J.-C. Nicaise in Comprehensive Asymmetric
Catalysis (Eds.: E. N. Jacobsen, A. Pfaltz, H. Yamamoto),
Springer, Berlin, 1999; pp. 924–958; e) A. B. Charette in
Chiral Amine Synthesis (Ed.: T. C. Nugent), Wiley-VCH,
2010, pp. 1–49; f) S. Kobayashi, Y. Mori, J. S. Fossey, M. M.
Salter, Chem. Rev. 2011, 111, 2626–2704.
Entry
Imine 3, R=
Catalyst
Yield[b] (%)
ee[c] (%)
1
2
3
4
5
6
7
8
4-MeO-C6H4
4-MeO-C6H4
3-Cl-C6H4
(Rp,S)-1
(Rp,S)-2
(Rp,S)-1
(Rp,S)-2
(Rp,S)-1
(Rp,S)-2
(Rp,S)-1
(Rp,S)-2
(Rp,S)-1
(Rp,S)-2
(Rp,S)-1
(Rp,S)-2
81
85
91
89
85
80
85
87
81
85
94
92
92
94
97
92
88
91
97
93
84
90
68
68
[2] For leading examples of copper-catalyzed reactions, see:
a) H. Fujihara, K. Nagai, K. Tomioka, J. Am. Chem. Soc.
2000, 122, 12055; b) T. Soeta, K. Nagai, H. Fujihara, M.
Kuriyama, K. Tomioka, J. Org. Chem. 2003, 68, 9723;
c) A. A. Boezio, A. B. Charette, J. Am. Chem. Soc. 2003,
125, 1692; d) A. A. Boezio, J. Pytkowicz, A. Cotꢁ, A. B.
Charette, J. Am. Chem. Soc. 2003, 125, 14260; e) C.-J.
Wang, M. Shi, J. Org. Chem. 2003, 68, 6229; f) X. Li, L.-F.
Cun, L.-Z. Gong, A.-Q. Mi, Y.-Z. Jiang, Tetrahedron: Asym-
metry 2003, 14, 3819; g) A. Cꢂtꢁ, A. A. Boezio, A. B. Char-
ette, Angew. Chem. 2004, 116, 6687; Angew. Chem. Int. Ed.
2004, 43, 6525; h) J.-N. Desrosiers, A. Cꢂtꢁ, A. B. Charette,
Tetrahedron 2005, 61, 6186.
[3] For zirconium catalysis, see: a) J. R. Porter, J. F. Traverse,
A. H. Hoveyda, M. L. Snapper, J. Am. Chem. Soc. 2001,
123, 984; b) J. R. Porter, J. F. Traverse, A. H. Hoveyda,
M. L. Snapper, J. Am. Chem. Soc. 2001, 123, 10409; c) L. C.
Akullian, M. L. Snapper, A. H. Hoveyda, Angew. Chem.
2003, 115, 4376; Angew. Chem. Int. Ed. 2003, 42, 4244;
d) L. C. Akullian, J. R. Porter, J. F. Traverse, M. L. Snapper,
A. H. Hoveyda, Adv. Synth. Catal. 2005, 347, 417.
3-Cl-C6H4
4-tBu-C6H4
4-tBu-C6H4
3-MeO-C6H4
3-MeO-C6H4
4-CO2Me-C6H4
4-CO2Me-C6H4
1-naphtyl
9
10
11
12
1-naphtyl
[a] Substrate (0.25 mmol), ligand (5 mol%), dibutylzinc
(0.75 mmol), 16 h. Optimal reaction temperatures: 208C (entries 1,
2), 108C (entries 11, 12), 08C (entries 3–10). [b] Isolated yield. [c]
Determined by HPLC with chiral stationary phase (Chiralcel OD).
Absolute configuration established as (R) via Cbz-protected 1-
phenyl pentylamine derived from 5a by comparison with literature
values.[10]
was closed and flushed with argon for several minutes.
Subsequently, the vial was placed into a magnetically
stirred reaction block and cooled to 108C. Dibutylzinc
(0.75 mL, 1.0 molar solution in heptane, Fluka or Al-
drich) was added and the heterogeneous mixture was
stirred for 16 h. Aqueous workup and chromatography on
silica afforded the desired product 5a in 95% yield and
88% ee (Chiralcel OD, 1.0 mLminÀ1. heptane/2-propanol
90/10).
In conclusion, we have reported the first study dedicat-
ed to the asymmetric catalytic addition of dibutylzinc to
imine substrates giving rise to 1-aryl pentylamine deriva-
tives in high yield and good to excellent enantioselectivi-
ty. In a collaborative project we are now working on a
stereochemical rationale based on DFT calculations.[14]
[4] For rhodium catalysis, see: T. Nishimura, Y. Yasuhara, T.
Hayashi, Org. Lett. 2006, 8, 979.
[5] For additions catalyzed by zinc complexes, see: a) S.
Dahmen, S. Brꢀse, J. Am. Chem. Soc. 2002, 124, 5941; b) N.
Hermanns, S. Dahmen, C. Bolm, S. Brꢀse, Angew. Chem.
2002, 114, 3844; Angew. Chem. Int. Ed. 2002, 41, 3692;
c) H.-L. Zhang, H. Liu, X. Cui, A.-Q. Mi, Y.-Z. Jiang, L.-Z.
Gong, Synlett 2005, 615; d) H. Liu, H.-L. Zhang, S.-J. Wang,
A.-Q. Mi, Y.-Z. Jiang, L.-Z. Gong, Tetrahedron: Asymmetry
2005, 16, 2901; e) Accounts: S. Brꢀse, T. Baumann, S.
Dahmen, H. Vogt, Chem. Commun. 2007, 1881–1890; f) S.
Brꢀse in Asymmetric Synthesis with Chemical and Biological
Methods (Ed.: D. Enders), Wiley-VCH, Weinheim, 2007,
pp. 196–214.
[6] Selected references from the Rozenberg group dealing with
ligands of type 1, 2: a) D. Y. Antonov, Y. N. Belokon, N. S.
Ikonnikov, S. A. Orlova, A. P. Pisarevsky, N. I. Raevski, V. I.
Rozenberg, E. V. Sergeeva, Y. T. Struchkov, V. I. Tararov,
E. V. Vorontsov, J. Chem. Soc. Perkin Trans. 1 1995, 1873–
1879; b) The first report of ligands 1 and 2: V. Rozenberg,
T. Danilova, E. Sergeeva, E. Vorontsov, Z. Starikova, K. Ly-
senko, Y. Belokon, Eur. J. Org. Chem. 2000, 3295–3303;
c) V. I. Rozenberg, T. I. Danilova, E. V. Sergeeva, I. A.
Shouklov, Z. A. Starikova, H. Hopf, K. Kꢃhlein, Eur. J.
Org. Chem. 2003, 432–440; d) D. Y. Antonov, V. I. Rozen-
berg, T. I. S. Danilova, A. Zoya, H. Hopf, Eur. J. Org.
Chem. 2008, 1038–1048; e) Additional applications: E. V.
Sergeeva, I. A. Shuklov, D. Y. Antonov, N. V. Vorontsova,
E. V. Vorontsov, Z. A. Starikova, M. M. Il’in, V. I. Rozen-
berg, Tetrahedron: Asymmetry 2010, 21, 1004–1010; f) E. V.
Sergeeva, V. I. Rozenberg, D. Y. Antonov, E. V. Vorontsov,
Acknowledgments
T. Dahmen is acknowledged for experimental support
and M. Ridder for carefully reading the manuscript. S.B.
thanks the Deutsche Forschungsgemeinschaft (DFG) for
support through project B2 of SFB/TRR 88 (“Koopera-
tive Effekte in homo- und heterometallischen Komplex-
en”).
Isr. J. Chem. 2012, 52, 139 – 142
ꢁ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
141