CREATED USING THE RSC ARTICLE TEMPLATE (VER. 3.1) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS
Page 9 of 10
ARTICLE TYPE
Organic & Biomolecular Chemistry
alkaloids, see: (e) T. J. Donohoe, C. J. R. Bataille and G. W.
Churchill, Annu. Rep. Prog. Chem., Sect. B, 2006, 102, 98; (f) A. A.
(d, J = 8.0 Hz,1H, ArH), 7.58 (d, J = 8.0 Hz, 1H, ArH),
7.307.23 (m, 7H, ArH), 5.22 (d, J = 5.2 Hz, 1H, CH), 4.68 (t, J
= 6.0 Hz, 1H, CH), 4.023.94 (m, 3H, CH2), 3.38 (dd, J1 = 11.4
Hz, J2 = 8.2 Hz, 1H, CH2), 2.802.73 (m, 1H, CH), 2.432.30 (m,
4H, CH2 + CH3), 2.22 (dd, J1 = 8.0 Hz, J2 = 5.6 Hz, 1H, CH2),
1.12 (t, J = 7.2 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, CDCl3):
170.0, 144.3, 138.4, 133.8, 129.8, 128.9, 128.4, 127.6, 126.2
95.8, 67.0, 61.1, 52.7, 39.8, 34.9, 21.5, 14.0 ppm. For minor
diastereomer: 1H NMR (400 MHz, CDCl3): 7.62 (d, J = 8.0 Hz,
10 1H, ArH), 7.58 (d, J = 8.0 Hz, 1H, ArH), 7.307.23 (m, 7H, ArH),
5.20 (s, 1H, CH), 4.82 (d, J = 5.6 Hz, 1H, CH), 4.023.94 (m, 3H,
CH2), 3.15 (t, J = 10.0 Hz, 1H, CH2), 3.073.01 (m, 1H, CH),
2.432.30 (m, 4H, CH2 + CH3), 2.22 (dd, J1 = 8.0 Hz, J2 = 5.6
Hz, 1H, CH2), 1.12 (t, J = 7.2 Hz, 3H, CH3) ppm; 13C NMR (100
15 MHz, CDCl3): 170.0, 144.0, 138.7, 133.6, 129.6, 128.9, 128.4,
127.7, 126.0, 93.7, 67.3, 61.1, 51.1, 36.5, 31.5, 21.5, 14.0 ppm.
DOI: 10.1039/C5OB01749A
Flanagan, B. N. Glover, R. Guidetti, D. Haigh, P. D. Howes, M. M.
60
65
70
75
80
Jackson, R. T. Matsuoka, K. J. Medhurst, A. Millar, M. J. Sharp, M.
J. Slater, J. F. Toczko and S. Xie, J. Org. Chem., 2008, 73, 3094; (g)
C. Nájera, J. M. Sansano, Org. Biomol. Chem., 2009, 7, 4567.
For some recent examples of biologically active pyrrolidines, see: (a)
M. E. Hensler, G. Bernstein, V. Nizet and A. Nefzi, Bioorg. Med.
Chem. Lett., 2006, 16, 5073; (b) X. Li and J. Li, Mini-Rev. Med.
Chem., 2010, 10, 794; (c) K. W. Lexa, Proteins, 2011, 79, 2282. For
recent studies of pyrrolidines as peptidomimetics, see: (d) L. R.
Whitby, Y. Ando, V. Setola, P. K. Vogt, B. L. Roth and D. L. Boger,
J. Am. Chem.Soc., 2011, 133, 10184; (e) A. Raghuraman, E. Ko, L.
M. Perez, T. R. Ioerger and K.Burgess, J. Am. Chem. Soc., 2011, 133,
12350.
For a recent survey of chiral amine organocatalysis, see (a) S. Zhang
and W. Wang, Privileged Chiral Ligands and Catalysts; Q.-L. Zhou,
Ed., Wiley-VCH: Weinheim, Germany, 2011; pp 409-439. For
selected examples, see: (b) S. Karlsson and H.-E. Hogberg,
Tetrahedron: Asymmetry, 2002, 13, 923; (c) S. S. Chow, M.
Nevalainen, C. A. Evans and C. W. Johannes, Tetrahedron Lett. 2007,
48, 277; (d) J. Vesely, R. Rios, I. Ibrahem, G.-L. Zhao, L. Eriksson
and A. Córdova, Chem.Eur. J., 2008, 14, 2693; (e) X. Cai, C. Wang
and J. Sun, Adv. Synth. Catal., 2012, 354, 359; (f) J. Alemán, A.
Fraile, L.Marzo, J. L. G. Ruano, C. Izquierdo and S. Díaz-Tendero,
Adv. Synth. Catal., 2012, 354, 1665; (g) C. Izquierdo, F. Esteban, A.
Parra, R. Alfaro, J. Alemán, A. Fraile and J. L. G. Ruano, J. Org.
Chem., 2014, 79, 10417; (h) S. Reboredo, E. Reyes, J. L. Vicario, D.
Badía, L. Carrillo, A. Cózar and F. P. Cossío, Chem. Eur. J., 2012,
18, 7179; (i) S. Reboredo, J. L. Vicario, L. Carrillo, E. Reyes and U.
Uria, Synthesis, 2013, 2669. For a review with examples of chiral
amine ligands, see: (j) C. A. Caputo and N. D. Jones, Dalton Trans.,
2007, 4627.
5
2
3
tert-Butyl 2-((3S,4R,5S)-4-nitro-5-phenyl-1-tosylpyrrolidin-
3-yl)acetate (3ak). The title compound 3ak was obtained
20 according to the general procedure as a colorless solid (90.8 mg,
99% yield). HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol
= 80:20, flow rate 1.0 mL/min, detection at 254 nm): for major
diastereomer: 74% ee, tmajor = 11.6 min, tminor = 13.3 min; minor
diastereomer: 80% ee, tmajor = 10.2 min, tminor = 14.2 min; 57:43 dr. 85
25 M.p. 2830 oC; For major diastereomer: 1H NMR (400 MHz,
CDCl3): 7.71 (d, J = 8.4 Hz, 1H, ArH), 7.67 (d, J = 8.4 Hz, 1H,
ArH), 7.387.31 (m, 7H, ArH), 5.24 (s, 1H, CH), 4.90 (d,J = 5.6
Hz, 1H, CH), 4.074.00 (m, 1H, CH2), 3.20 (dd, J1 = 11.2 Hz, J2
= 8.8 Hz, 1H, CH2), 3.153.05 (m, 1H, CH), 2.44 (s, 3H, CH3),
30 2.412.34 (m, 1H, CH2), 2.29 (dd, J1 = 17.2 Hz, J2 = 6.8 Hz, 1H,
CH2), 1.38 (s, 9H, CH3) ppm; 13C NMR (100 MHz, CDCl3):
169.2, 144.0, 138.7, 133.6, 129.6, 128.9, 128.4, 127.7, 126.0,
93.7, 81.8, 67.3, 51.1, 36.6, 32.5, 27.8, 21.5 ppm. For minor
diastereomer: 1H NMR (400 MHz, CDCl3): 7.71 (d, J = 8.4 Hz,
35 1H, ArH), 7.67 (d, J = 8.4 Hz, 1H, ArH), 7.387.31 (m, 7H, ArH),
5.28 (d, J = 5.2 Hz, 1H, CH), 4.74 (dd, J1 = 6.8 Hz, J2 = 5.2 Hz,
1H, CH), 4.074.00 (m, 1H, CH2), 3.45 (dd, J1 = 11.6 Hz, J2 =
8.0 Hz, 1H, CH2), 2.862.77 (m, 1H, CH), 2.44 (s, 3H, CH3),
2.412.34 (m, 1H, CH2), 2.18 (dd, J1 = 17.4 Hz, J2 = 7.8 Hz, 1H,
40 CH2), 1.38 (s, 9H, CH3) ppm; 13C NMR (100 MHz, CDCl3):
169.1, 144.2, 138.4, 133.8, 129.8, 128.9, 128.4, 127.6, 126.1,
95.9, 81.8, 67.0, 52.7, 40.0, 36.3, 27.8, 21.5 ppm. IR (ATR):
90
4
For reviews of enantioselective approaches, see: (a) X. Companyó, A.-
N. Alba and R. Rios, In Targets in Heterocyclic Systems, Vol. 13; O.
A. Attanasi, Ed. Royal Society of Chemistry: London, 2009; pp
147−174; (b) A. Myano and R. Rios, Chem. Rev., 2011, 111, 4703.
For some recent examples of approaches to cyclic products including
pyrrolidines, see: (c) H. Li, L. Zu, H. Xie, J. Wang and W. Wang,
Chem. Commun., 2008, 5636; (d) N. T. Jui, J. A. O. Garber, F. G.
Finelli and D. W. C. MacMillan, J. Am. Chem. Soc., 2012, 134,
11400; (e)T. Arai, H. Ogawa, A. Awata, M. Sato, M. Watabe and M.
Yamanaka, Angew. Chem. Int. Ed., 2015, 54, 1595.
Recent reviews of catalytic asymmetric [3+2] cycloaddition: (a) J.
Adrio and J. C. Carretero, Chem. Commun., 2011, 47, 6784; (b) L.
Albrecht, H. Jiang and K. A. Jørgensen, Angew.Chem. Int. Ed., 2011,
50, 8492; Angew. Chem., 2011, 123, 8642; (c) E. E. Maroto, M.
Izquierdo, S. Reboredo, J. Marco-Martínez, S. Filippone and N.
Martín, Acc. Chem. Res., 2014, 47, 2660; (d) J. Adrio and J. C.
Carretero, Chem. Commun., 2014, 50, 12434. For selected examples,
see: (e) L. Hu and O. Ramstrőm, Chem. Commun., 2014, 50, 3792; (f)
M. González-Esguevillas, J. Adrio and J. C. Carretero, Chem.
Commun., 2012, 48, 2149; (g) R. Robles-Machín, I. Alonso, J. Adrio
and J. C. Carretero, Chem. Eur. J., 2010, 16, 5286; (h) A. S.Gothelf,
K. V. Gothelf, R. G. Hazell and K. A. Jørgensen, Angew. Chem. Int.
Ed., 2002, 41, 4236; (i) J. Hernández-Toribio, S. Padilla, J. Adrio and
J. C. Carretero, Angew. Chem. Int. Ed., 2012, 51, 8854; (j) J. M.
Longmire, B. Wang and X. Zhang, J. Am. Chem. Soc., 2002, 124,
13400; (k) C. Chen, X. Li and S. L. Schreiber, J. Am. Chem. Soc.,
2003, 125, 10174; (l) Y. Yamashita, X.-X. Guo, R. Takashita and S.
Kobayashi, J. Am. Chem. Soc., 2010, 132, 3262; (m) S. Padilla, R.
Tejero, J. Adrio and J. C. Carretero, Org. Lett., 2010, 12, 5608; (n) J.
Hernández-Toribio, R. G. Arrayás, B. Martín-Matute and J. C.
Carretero, Org. Lett., 2009, 11, 393; (o) A. Pascual-Escudero, M.
González-Esguevillas, S. Padilla, J. Adrio and J. C. Carretero, Org.
Lett., 2014, 16, 2228.
95
100
105
110
115
120
5
v
1725, 1552, 1454, 1350, 1278, 1258, 1152, 1091, 1029, 1009,
946, 842, 814, 765, 751, 699, 644, 582, 545 cm1; HRMS (ESI):
45 m/z calcd. For C23H29N2O6S [M + H]+ 461.17408, found
461.17460.
Acknowledgements
We are grateful for financial support from the National Natural
Science Foundation of China (Grant No. 21272024).
50 Notes and references
1
For reviews with examples of biologically active pyrrolidines inspired
by natural products, see: (a) F. J. Sardina and H. Rapoport, Chem.
Rev., 1996, 96, 1825; (b) D. O’Hagan, Nat. Prod. Rep., 2000, 17, 435;
(c) F. Bellina and R.Rossi, Tetrahedron, 2006, 62, 7213; (d) C. V.
Galliford and K. A. Scheidt, Angew. Chem., Int. Ed., 2007, 46, 8748.
For reviews containing recent syntheses of pyrrolidine-containing
125 6 Representative examples: (a) J. Xie, K. Yoshida, K. Takasu and Y.
Takemoto, TetrahedronLett., 2008, 49, 6910; (b) Y.-K. Liu, H. Liu,
W. Du, L. Yue and Y.-C. Chen, Chem. Eur. J., 2008, 14, 9873; (c) K.
55
This journal is © The Royal Society of Chemistry 2015
Org. Biomol. Chem., 2015, 13, 00–00 | 9