cytotoxic/antiproliferative,9 phytotoxic,10 antimicrobial,11
antifungal,12 antiulcer,13 antimalarial,14 anti-inflammatory,13
antioxidant,15 and antiallergic16 properties.
aldehyde through hydrogen bond donation/general acid
catalysis (Scheme 1C).
Our group (among others17,18) has recently been en-
gaged in the use of cinchona alkaloid-derived bifunctional
organocatalysts19c,d,20 topromotetheasymmetricaddition
of alcohol21 and thiol22 nucleophiles to cyclic anhydrides
and related electrophiles.23 These catalysts rely on the
confluence of relatively weak synergistic catalystꢀsubstrate
interactions (mostly the donation of hydrogen bonds to
the anhydride and general-base catalysis of the pronucleo-
phile addition).
Scheme 1. Annulations of Cyclic Anhydrides with Aldehydes/
Imines: Scope and Proposed Strategy
Since these catalysts are compatible with cyclic anhy-
dride substrates (hitherto only when the anhydrides are
being employed as electrophiles) and have been known (in
isolated cases) to activate aldehyde/ketone electrophiles,24
we proposed that, in the absence of a powerful pronucleo-
phile, these bifunctional catalysts could be employed to
bring about the activation of an enolizable anhydride as a
nucleophile (through catalysis of the equilibrium between
it and its enol form), while simultaneously activating the
To test this hypothesis, in preliminary experiments we
evaluated the addition of homophthalic anhydride (8) to
benzaldehyde (9) in THF at ambient temperature in the
presence of a wide range of chiral alkaloid-derived cata-
lysts 11 at 5 mol % loading. In the absence of catalyst, the
reaction proceeds very slowly, with moderate diastereoselec-
(10) Enomoto, M.; Kuwahara, S. Angew. Chem., Int. Ed. 2009, 121,
1144.
(11) (a) Bogdanov, M. G.; Kandinska, M. I.; Dimitrova, D. B.;
Gocheva, B. T.; Palamareva, M. D. Naturforsch. 2007, 62, 477. (b)
Tabopda, T. K.; Fotso, G. W.; Ngoupayo, J.; Mitaine-Offer, A.-C.;
Ngadjui, B. T.; Lacaille-Dubois, M.-A. Planta Med. 2009, 75, 1228.
(12) Hussain, H.; Akhtar, N.; Draeger, S.; Schulz, B.; Pescitelli, G.;
€
tivity in favor of trans-10 (Table 1, entry 1). Use of Hunig’s
base as a catalyst led to considerably faster reactions with no
improvement in diastereoselectivity (entry 2). The observed
catalysis of this reaction by a non-nucleophilic base lends
weight to the hypothesis that the enol of anhydride 8acts as a
nucleophilic species in the reaction. Quinine (11a), and its
O-benzoylated derivative 11b, promoted the reaction with
marginally higher diastereoselectivity. However, the product
enantiomeric excesses were inadequate (entries 3ꢀ4), as were
those obtained from reactions catalyzed by both the C-9
arylated alkaloids 11c and 11d (entries 5ꢀ6).22 The bifunc-
tional sulfonamide-substituted catalysts 11eꢀg, which have
proven highly efficacious in the catalysis of asymmetric
additions to anhydrides,18c,f,22b promoted the formation of
predominantly trans-10 in excellent yield, with poor to
moderate levels of ee (entries 7ꢀ9). The exchange of the
sulfonamide for urea and thiourea functionality18 (i.e.,
catalysts 11hꢀl) resulted in higher enantioselectivity, with
the thiourea-based catalyst 11l clearly superior to the others
(>75% ee for both the cis and trans diastereomers, with a
9-fold preference for the trans-stereoisomer, entries 10ꢀ14).
The recently developed alkaloid derivative 11m24b,c is a
relatively poor catalyst (entry 15). Recently, Rawal25 in-
troduced a class of squaramide-substituted catalyst as an
alternative to (thio)urea-based materials. Squaramide 11n
catalyzed the formation of trans-10 with good diastereos-
electivity and 90% ee (entry 16). The C2-symmetric analogue
11o, which is an excellent catalyst for azlactone alcoholysis,26
is unsuitable for use in this reaction (entry 17).
ꢀ
Salvadori, P.; Antus, S.; Kurtan, T.; Krohn, K. Eur. J. Org. Chem. 2009,
749.
(13) (a) Shimojima, Y.; Shirai, T.; Baba, T.; Hayashi, H. J. Med.
Chem. 1985, 28, 3. (b) McInerney, B. V.; Taylor, W. C.; Lacey, M. J.;
Akhurst, R. J.; Gregson, R. P. J. Nat. Prod. 1991, 54, 785.
(14) Kongsaeree, P.; Prabpai, S.; Sriubolmas, N.; Vongvein, C.;
Wiyakrutta, S. J. Nat. Prod. 2003, 66, 709.
(15) Nazir, N.; Koul, S.; Quirishi, M. A.; Najar, M. A.; Zargar, M. I.
Eur. J. Med. Chem. 2011, 46, 2415.
(16) Yoshikawa, M.; Uchida, E.; Chatan, N.; Kobayashi, H.;
Naitoh, Y.; Okuno, Y.; Matsuda, H.; Yamahara, J.; Murakami, N.
Chem. Pharm. Bull. 1992, 40, 3352.
(17) For seminal work on the highly enantioselective (modified)
cinchona-alkaloid-mediated desymmetrizations of meso-anhydrides
see: (a) Chen, Y.; Tian, S.-K.; Deng, L. J. Am. Chem. Soc. 2000, 122,
9542. (b) Bolm, C.; Gerlach, A.; Dinter, C. L. Synlett 1999, 195. (c)
Bolm, C.; Schiffers, I.; Dinter, C. L.; Gerlach, A. J. Org. Chem. 2000, 65,
6984.
(18) (a) Chen, Y.; McDaid, P.; Deng, L. Chem. Rev. 2003, 103, 2965.
(b) Atodiresei, I.; Schiffers, I.; Bolm, C. Chem. Rev. 2007, 107, 5683. (c)
Rodriguez-Docampo, Z.; Connon, S. J. ChemCatChem 2012, 4, 151. (d)
Honjo, T.; Sano, S.; Shiro, M.; Nagao, Y. Angew. Chem., Int. Ed. 2005,
44, 5838. (e) Rho, H. S.; Oh, S. H.; Lee, J. W.; Lee, J. Y.; Chin, J.; Song,
C. E. Chem. Commun. 2008, 1208. (f) Oh, S. H.; Rho, H. S.; Lee, J. W.;
Lee, J. E.; Youk, S. H.; Chin, J.; Song, C. E. Angew. Chem., Int. Ed. 2008,
47, 7872.
(19) (a) Li, B. -J.; Jiang, L.; Liu, M.; Chen, Y. -C.; Ding, L. -S.; Wu,
ꢀ
ꢀ
Y. Synlett 2005, 603. (b) Vakulya, B.; Varga, S.; Csampai, A.; Soos, T.
Org. Lett. 2005, 7, 1967. (c) McCooey, S. H.; Connon, S. J. Angew.
Chem., Int. Ed. 2005, 44, 6367. (d) Ye, J.; Dixon, D. J.; Hynes, P. S.
Chem. Commun. 2005, 4481.
(20) Hiemstra, H.; Marcelli, T. Synthesis 2010, 1229.
(21) Peschiulli, A.; Gun’ko, Y.; Connon, S. J. J. Org. Chem. 2008, 73,
2454.
(22) (a) Peschiulli, A.; Quigley, C.; Tallon, S.; Gun’ko, Y.; Connon,
S. J. J. Org. Chem. 2008, 73, 6409. (b) Peschiulli, A.; Procuranti, B.; O’
Connor, C. J.; Connon, S. J. Nat. Chem. 2010, 2, 380.
(23) Quigley, C.; Rodriguez-Docampo, Z.; Connon, S. J. Chem.
Commun. 2012, 48, 1443.
(25) Malerich, J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc.
2008, 130, 14416.
(26) Lee, J. W.; Ryu, T. H.; Oh, J. S.; Bae, H. Y.; Jang, H. B.; Song,
(24) (a) Marcelli, T.; van der Haas, R. N. S.; van Maarseveen, J.;
Hiemstra, H. Angew. Chem., Int. Ed. 2006, 45, 929. (b) Palacio, C.;
Connon, S. J. Org. Lett. 2011, 13, 1298. (c) Palacio, C.; Connon, S. J.
Chem. Commun. 2012, 48, 2849.
C. E. Chem. Commun. 2009, 7224.
Org. Lett., Vol. 14, No. 7, 2012
1851