catalyst development reports have conceded that reactivity
with cyclic dialkylamine substrates is particularly chal-
lenging.14a,b,d,k Furthermore, ongoing catalyst development
efforts in our laboratories have shown that the amidate
supported tantalum complex 1 promotes unique reactivity,
as we have developed new catalysts with improved activity
and alkene substrate scope that cannot be used with piper-
idine.15 Here we explore the broader substrate scope of this
unique reactivity identified for Ta amidate precatalyst 1. The
direct R-alkylation of piperidines is explored and reactions
with azepanes and piperazines are disclosed for the first time.
The improved functional group tolerance observed during
these investigations also promoted the development of a one-
pot synthesis of β-methylated aminoalcohols, azetidines,
pyrrolidines, and piperidines featuring hydroaminoalky-
lation as a key step in their syntheses.
Figure 1. Natural products containing an R- or β-alkylated
N-heterocyclic core.4,5
protecting/directing groups on the nitrogen substituent. A
complementary and atom economic strategy for alkylation at
the R-position of unprotected secondary amines is early
transition-metal catalyzed hydroaminoalkylation (Scheme 1).13
Scheme 1. Intermolecular Hydroaminoalkylation
Figure 2. Tantalum amidate precatalyst 1.
To date, hydroaminoalkylation investigations using group
4 and 5 based catalyst systems have shown that secondary
arylalkyl and dialkyl acyclic amines can be efficiently pre-
pared.14 Indeed, substrate scope investigations of such re-
cently developed systems have repeatedly shown that the only
N-heterocycle that can undergo direct CÀH functionaliza-
tion is 1,2,3,4-tetrahydroquinoline.14e,i,k,m One reported ex-
ample of the hydroaminoalkylation of piperidine (Table 1,
entry 1) was disclosed by our group over 3 years ago using Ta
amidate precatalyst 1 (Figure 2).14i Since that time, several
The exploration of substrate scope builds upon the single
previous report of using piperidine for the hydroaminoalk-
ylation of 1-octene (Table 1, entry 1).14i Typically, pyrroli-
dines are preferred over piperidine substrates for R-lithiation
strategies7e,10c,16 and Ru catalyzed R-alkylation.10a Thus the
direct alkylation of larger N-heterocycles such as piperidines
and azepanes presented here is complementary to other
established approaches. Using 5 mol % of 1, an internal
alkene, norbornene, can undergo hydroaminoalkylation
with piperidine (Table 1, entry 2). Protected alcohols can
be incorporated into the alkene, providing a site for further
functionalization of the amine product (Table 1, entry 3).
Alternatively, a piperidine with a protected carbonyl sub-
stituent is shown to be compatible with this early transition
metal catalyst (Table 1, entry 4).
ꢀ
(10) (a) Bergman, S. D.; Storr, T. E.; Prokopcova, H.; Aelvoet, K.;
Diels, G.; Meerpoel, L.; Maes, B. U. W. Chem.;Eur. J. 2012, 18, 10393.
For recent reviews, see: (b) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-
Kreutzer, J.; Baudoin, O. Chem.;Eur. J. 2010, 16, 2654. (c)
ꢀ
Prokopcova, H.; Bergman, S. D.; Aelvoet, K.; Smout, V.; Herrebout,
W.; Van der Veken, B.; Meerpoel, L.; Maes, B. U. W. Chem.;Eur. J.
2010, 16, 13063 and references therein.
(11) Zhang, G.; Zhang, Y.; Wang, R. Angew. Chem., Int. Ed. 2011,
50, 10429.
(12) (a) Davies, H. M. L.; Venkataramani, C.; Hansen, T.; Hopper,
D. W. J. Am. Chem. Soc. 2003, 125, 6462. (b) Doyle, M. P.; Duffy, R.;
Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704.
(13) Roesky, P. W. Angew. Chem., Int. Ed. 2009, 48, 4892.
With such functional group tolerance established for 1,
1,2,3,4-tetrahydroquinoline can be used for the hydroamino-
alkylation of olefinic silyl ethers (Table 1, entries 5, 6).
Impressively, larger heterocyclic rings such as azepane can
also be used, however decreased diastereoselectivity is observed
(Table 1, entry 7). The direct alkylation of N-substituted
piperazines was then explored (Table 1, entries 8À12).17
Remarkably, this reaction is tolerant to various substitu-
ents on the distal nitrogen, including p-methoxyphenyl
and benzhydryl which allow for subsequent deprotection.
Good yields are obtained with both alkyl and benzylic
olefins (Table 1, entries 11, 12). Efforts to directly alkylate
€
(14) (a) Dorfler, J.; Doye, S. Angew. Chem., Int. Ed. 2013, 52, 1806.
(b) Reznichenko, A. L.; Hultzsch, K. C. J. Am. Chem. Soc. 2012, 134,
3300. (c) Jaspers, D.; Saak, W.; Doye, S. Synlett 2012, 23, 2098–2102. (d)
€
Reznichenko, A. L.; Emge, T. J.; Audorsch, S.; Klauber, E. G.;
Hultzsch, K. C.; Schmidt, B. Organometallics 2011, 30, 921. (e) Zhang,
F.; Song, H.; Zi, G. Dalton Trans. 2011, 40, 1547. (f) Zi, G.; Zhang, F.;
Song, H. Chem. Commun. 2010, 46, 6296. (g) Kubiak, R.; Prochnow, I.;
Doye, S. Angew. Chem., Int. Ed. 2010, 49, 2626. (h) Bexrud, J. A.;
Eisenberger, P.; Leitch, D. C.; Payne, P. R.; Schafer, L. L. J. Am. Chem.
Soc. 2009, 131, 2116. (i) Eisenberger, P.; Ayinla, R. O.; Lauzon, J. M. P.;
Schafer, L. L. Angew. Chem., Int. Ed. 2009, 48, 8361. (j) Kubiak, R.;
Prochnow, I.; Doye, S. Angew. Chem., Int. Ed. 2009, 48, 1153. (k)
Prochnow, I.; Kubiak, R.; Frey, O. N.; Beckhaus, R.; Doye, S. Chem.
Catal. Chem. 2009, 1, 162. (l) Herzon, S. B.; Hartwig, J. F. J. Am. Chem.
Soc. 2008, 130, 14940. (m) Herzon, S. B.; Hartwig, J. F. J. Am. Chem.
Soc. 2007, 129, 6690. (n) Nugent, W. A.; Ovenall, D. W.; Holmes, S. J.
Organometallics 1983, 2, 161. (o) Preuß, T.; Saak, W.; Doye, S.
Chem.;Eur. J. 2013, 19, 3833.
(15) Zhang, Z.; Hamel, J.-D.; Schafer, L. L. Chem.;Eur. J. 2013, in
Press.
(16) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861.
(17) Attempted hydroaminoalkylation with parent piperazine, mor-
pholine, and thiomorpholine was unsuccessful.
Org. Lett., Vol. 15, No. 9, 2013
2183