Journal of Medicinal Chemistry
Article
(12) Parkinson, G. N.; Lee, M. P.; Neidle, S. Crystal structure of
parallel quadruplexes from human telomeric DNA. Nature 2002, 417,
876−880.
Note: “preformed” G-quadruplex DNA refers to the G-
quadruplex DNA formed in absence of any added ligand (i.e.,
the unstructured DNA is annealed in the chosen buffer, having
indicated salt, however, with no added ligand). [ligand]:[DNA]
ratio = equiv of ligand (μM) with respect to that of DNA (μM
of DNA strand). [DNA]:[ligand] ratio = equiv of DNA (μM of
DNA strand) with respect to that of ligand (μM).
(13) (a) Ambrus, A.; Chen, D.; Dai, J.; Bialis, T.; Jones, R. A.; Yang,
D. Human telomeric sequence forms a hybrid-type intramolecular G-
quadruplex structure with mixed parallel/antiparallel strands in
potassium solution. Nucleic Acids Res. 2006, 34, 2723−2735. (b) Xu,
Y.; Noguchi, Y.; Sugiyama, H. The new models of the human telomere
d [AGGG(TTAGGG)3] in K+ solution. Bioorg. Med. Chem. 2006, 14,
5584−5591. (c) Luu, K. N.; Phan, A. T.; Kuryavyi, V.; Lacroix, L.;
Patel, D. J. Structure of the human telomere in K+ solution: an
intramolecular (3 + 1) G-quadruplex scaffold. J. Am. Chem. Soc. 2006,
128, 9963−9970. (d) Yang, D.; Okamoto, K. Structural insights into
G-quadruplexes: towards new anticancer drugs. Future Med. Chem.
2010, 2, 619−646.
ACKNOWLEDGMENTS
■
This work was supported by a grant (J.C. Bose Fellowship grant
to Prof. S. Bhattacharya) from the Department of Science and
Technology (DST), New Delhi, India. A.K.J. is thankful to
DST for a grant as a Fast Track Project and DBT New Delhi
for a postdoctoral fellowship. We thank Santosh K. Misra for
technical assistance.
(14) Li, J.; Correia, J. J.; Wang, L.; Trent, J. O.; Chaires, J. B. Not so
crystal clear: the structure of the human telomere G-quadruplex in
solution differs from that present in a crystal. Nucleic Acids Res. 2005,
33, 4649−4659.
(15) Lim, K. W.; Amrane, S.; Bouaziz, S.; Xu, W.; Mu, Y.; Patel, D. J.;
Luu, K. N.; Phan, A, T. Structure of the human telomere in K+
solution: a stable basket-type G-quadruplex with only two G-tetrad
layers. J. Am. Chem. Soc. 2009, 131, 4301−4309.
(16) Xue, Y.; Kan, Z.; Wang, Q.; Yao, Y.; Liu, J.; Hao, Y.; Tan, Z.
Human telomeric DNA forms parallel-stranded intramolecular G-
quadruplex in K+ solution under molecular crowding condition. J. Am.
Chem. Soc. 2007, 129, 11185−11191.
(17) (a) Miyoshi, D.; Sugimoto, N. Molecular crowding effects on
structure and stability of DNA. Biochimie 2008, 90, 1040−1051.
(b) Miller, M. C.; Buscaglia, R.; Chaires, J. B.; Lane, A. N.; Trent, J. O.
Hydration is a major determinant of the G-quadruplex stability and
conformation of the human telomere 3′ sequence of d(AG3(TTAG3)3.
J. Am. Chem. Soc. 2010, 132, 17105−17107.
(18) (a) Rodriguez, R.; Pantos, G. D.; Goncalves, D. P. N; Sanders, J.
K. M.; Balasubramanian, S. Ligand-driven G-quadruplex conforma-
tional switching by using an unusual mode of interaction. Angew.
Chem., Int. Ed. 2007, 46, 5405−5407. (b) Antonio, M. D.; Doria, F.;
Richter, S. N.; Bertipaglia, C.; Mella, M.; Sissi, C.; Palumbo, M.;
Freccero, M. Quinone methides tethered to naphthalene diimides as
selective G-quadruplex alkylating agents. J. Am. Chem. Soc. 2009, 131,
13132−13141. (c) Tan, J.-H.; Ou, T.-M.; Hou, J.-Q.; Lu, Y.-J.; Huang,
S.-L.; Luo, H.-B.; Wu, J.-Y.; Huang, Z.-S.; Wong, K.-Y.; Gu, L.-Q.
Isaindigotone derivatives: a new class of highly selective ligands for
telomeric G-quadruplex DNA. J. Med. Chem. 2009, 52, 2825−2835.
(19) (a) Han, H.; Hurley, L. H. G-quadruplex DNA: a potential
target for anti-cancer drug design. Trends Pharmacol. Sci. 2000, 21,
136−142. (b) Kieltyka, R.; Fakhoury, J.; Moitessier, N.; Sleiman, H. F.
Platinum phenanthroimidazole complexes as G-quadruplex DNA
selective binders. Chem.Eur. J. 2008, 14, 1145−1154. (c) Dixon, I.
M.; Lopez, F.; Tejera, A. M.; Esteve, J.-P.; Blasco, M. A.; Pratviel, G.;
Meunier, B. A G-Quadruplex ligand with 10000-fold selectivity over
duplex DNA. J. Am. Chem. Soc. 2007, 129, 1502−1503. (d) Cian, A.
D.; DeLemos, E.; Mergny, J.-L.; Teulade-Fichou, M.-P.; Monchaud, D.
Highly efficient G-quadruplex recognition by bisquinolinium com-
pounds. J. Am. Chem. Soc. 2007, 129, 1856−1857. (e) Alcaro, S.;
Artese, A.; Iley, J. N.; Maccari, R.; Missailidis, S.; Ortuso, F.; Ottana, R.
Patricia Ragazzon, P.; Vigorita, M. G. Tetraplex DNA specific ligands
based on the fluorenone-carboxamide scaffold. Bioorg. Med. Chem. Lett.
2007, 17, 2509−2514. (f) Ou, T.-M.; Lu, Y.-J.; Zhang, C.; Huang, Z.-
S.; Wang, X.-D.; Tan, J.-H.; Chen, Y.; Ma, D.-L.; Wong, K.-Y.; Tang, J.
C-O.; Chan, A. S-C.; Gu, L.-Q. Stabilization of G-quadruplex DNA
and down-regulation of oncogene c-myc by quindoline derivatives. J.
Med. Chem. 2007, 50, 1465−1474.
ABBREVIATIONS USED
■
G4DNA, G-quadruplex DNA; ODN, oligodeoxynucleotide;
CD, circular dichroism; ICD, induced circular dichorism; PEG,
polyethylene glycol; TRAP, telomerase repeat amplification
protocol; FI, fluorescence intensity; EDTA, ethylenediaminete-
traacetic acid; MTT, methyl thiazolyl tetrazolium; DMSO,
dimethyl sulphoxide; NMR, nuclear magnetic resonance;
MALDI, matrix assisted laser desorption ionization; IR, infrared
REFERENCES
■
(1) Meyne, J.; Ratliff, R. L.; Moyzis, R. K. Conservation of the human
telomere sequence (TTAGGG)n among vertebrates. Proc. Natl. Acad.
Sci. U.S.A. 1989, 86, 7049−7053.
(2) Yu, H.-Q.; Miyoshi, D.; Sugimoto, N. Characterization of
structure and stability of long telomeric DNA G-quadruplexes. J. Am.
Chem. Soc. 2006, 128, 15461−15468.
(3) Blackburn, E. H. Structure and function of telomeres. Nature
1991, 350, 569−573.
(4) (a) Franceschin, M. J. G-Quadruplex DNA structures and organic
chemistry: more than one connection. Eur. J. Org. Chem. 2009, 2225−
2238. (b) Jain, A. K.; Bhattacharya, S. Interaction of G-quadruplexes
with nonintercalating DNA minor groove binding ligands. Bioconjugate
Chem. 2011, 22, 2355−2368. (c) Jain, A. K.; Bhattacharya, S. Recent
developments in the chemistry and biology of G-quadruplexes with
reference to the DNA groove binders. Curr. Pharm. Des. 2012, 18,
1900−1916. (d) Folini, M.; Venturini, L.; Cimino-Reale, G.; Zaffaroni,
N. Telomeres as targets for anticancer therapies. Expert Opin. Ther.
Targets 2011, 15, 579−593.
(5) McEachern, M. J.; Krauskopf, A.; Blackburn, E. H. Telomers and
their control. Annu. Rev. Genet. 2000, 34, 331−358.
(6) Harley, C. B.; Futcher, A. B.; Greider, C. W. Telomeres shorten
during ageing of human fibroblasts. Nature 1990, 345, 458−460.
(7) Wright, W. E.; Tesmer, V. M.; Huffman, K. E.; Levene, S. D.;
Shay, J. W. Normal human chromosomes have long G-rich telomeric
overhangs at one end. Genes Dev. 1997, 11, 2801−2809.
(8) (a) Gowan, S. M.; Harrison, J. R.; Patterson, L.; Valneti, M.;
Read, M. A.; Neidle, S.; Kelland, L. R. A G-quadruplex-interactive
potent small-molecule inhibitor of telomerase exhibiting in vitro and in
vivo antitumor activity. Mol. Pharmacol. 2002, 61, 1154−1162.
(b) Chakraborty, T. K.; Arora, A.; Roy, S.; Kumar, N.; Maiti, S.
Furan based cyclic oligopeptides selectively target G-quadruplex. J.
Med. Chem. 2007, 50, 5539−5542.
(9) Cech, T. R. Life at the end of chromosome: telomers and
telomerase. Angew. Chem., Int. Ed. 2000, 39, 34−43.
(10) Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter,
P., Molecular Biology of the Cell, 4th ed.; Garland Science: New York,
2002.
(11) Wang, Y.; Patel, D. J. Solution structure of the human telomeric
repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1993, 1, 263−282.
(20) (a) Maiti, S.; Chaudhury, N. K.; Chowdhury, S. Hoechst 33258
binds to G-quadruplex in the promoter region of human c-myc.
Biochem. Biophys. Res. Commun. 2003, 310, 505−512. (b) Phan, A. T.;
Kuryavyi, V.; Gaw, H. Y.; Patel, D. J. Small-molecule interaction with a
five-guanine-tract G-quadruplex structure from the human MYC
promoter. Nature Chem. Biol. 2005, 1, 167−173.
2992
dx.doi.org/10.1021/jm200860b | J. Med. Chem. 2012, 55, 2981−2993