10.1002/adsc.201900526
Advanced Synthesis & Catalysis
ketones, ,-unsaturated esters, ,-unsaturated
amides, nitroalkenes, and imines, could be arylated in
high yields with excellent enantioselectivities, and the
catalyst could be reused more than 10 times without
any loss of yield or enantioselectivity. PS-diene Rh−Cl
is robust and superior to previous-reported
heterogeneous catalysts for the same type of
reactions[17-22] and has comparable performance with
the corresponding homogeneous catalyst.[13,16] These
results indicated that the chiral diene with the tertiary
alkyl amine-derived secondary amide moiety was
successfully immobilized even under radical
polymerization conditions. PS-diene Rh−Cl was
further activated either by treatment with a base or in
the presence of a Lewis basic additive. High TOF
(>1000 h–1) was achieved and the activated catalyst
was applied to an asymmetric continuous-flow
reaction.
[7] C. Fischer, C. Defieber, T. Suzuki, E. M. Carreira, J. Am.
Chem. Soc. 2004, 126, 1628–1629.
[8] K. Okamoto, T. Hayashi, V. H. Rawal, Chem. Commun.
2009, 4815–4817.
[9] C. Defieber, H. Grützmacher, E. M. Carreira, Angew.
Chem. Int. Ed. 2008, 47, 4482–4502.
[10] R. Shintani, T. Hayashi, Aldrichimica Acta 2009, 42,
31–38.
[11] C. G. Feng, M. H. Xu, G. Q. Lin, Synlett 2011, 1345–
1356.
[12] T. Yasukawa, H. Miyamura, S. Kobayashi, J. Am.
Chem. Soc. 2012, 134, 16963–16966.
[13] T. Yasukawa, A. Suzuki, H. Miyamura, K. Nishino, S.
Kobayashi, J. Am. Chem. Soc. 2015, 137, 6616–6623.
[14] T. Yasukawa, Y. Saito, H. Miyamura, S. Kobayashi,
Angew. Chem. Int. Ed. 2016, 55, 8058–8061.
Experimental Section
[15] T. Yasukawa, T. Kuremoto, H. Miyamura, S.
Kobayashi, Org. Lett. 2016, 18, 2716–2718.
Representative procedure of asymmetric arylation
catalyzed by PS-diene Rh catalyst.
[16] H. Miyamura, K. Nishino, T. Yasukawa, S. Kobayashi,
Chem. Sci. 2017, 8362–8372.
PS-diene Rh (0.189 mmol/g, 7.9 mg, 0.0015 mmol,
phenylboronic acid 2a (53.7 mg, 0.45 mmol) and 2-
cyclohexenone 1a (28.8 mg, 0.3 mmol) were mixed with
toluene (700 L) and water (1400 L). After the mixture
was stirred at 100 °C for 16 h, the resulting mixture was
diluted with Et2O, washed with saturated aqueous Na2CO3
twice and dried over Na2SO4, and the solvent was removed
[17] Y. Otomaru, T. Senda, T. Hayashi, Org. Lett. 2004, 6,
3357–3359.
[18] R. Jana, J. A. Tunge, Org. Lett. 2009, 11, 971–974.
[19] R. Jana, J. A. Tunge, J. Org. Chem. 2011, 76, 8376–
1
in vacuo. The conversion was determined by H NMR
8385.
analysis with reference to an internal standard (1,1,2,2-
tetrachloroethane). The crude product was purified by pTLC
(hexane/ethyl acetate = 10:1) to afford the pure product 3aa
(51.2 mg, 98% yield). The ee value of the product was
determined by chiral HPLC analysis (99% ee).
[20] B. H. Lipshutz, N. A. Isley, R. Moser, S. Ghorai, H.
Leuser, B. R. Taft, Adv. Synth. Catal. 2012, 354, 3175–
3179.
[21] T. Sawano, P. Ji, A. R. McIsaac, Z. Lin, C. W. Abney,
W. Lin, Chem. Sci. 2015, 6, 7163–7168.
Acknowledgements
[22] G. Shen, T. Osako, M. Nagaosa, Y. Uozumi, J. Org.
Chem. 2018, 83, 7380–7387.
This work was partially supported by a Grant-in-Aid for Science
Research from the Japan Society for the Promotion of Science
(JSPS) and the Ministry of Education, Culture, Sports, Science and
Technology (MEXT) and the Japan Science and Technology
Agency (JST). T. K. acknowledges the MERIT program, The
University of Tokyo.
[23] Monophasic system was not suitable for this reaction.
See SI for detail.
[24] See SI for detail.
[25] Z. Q. Wang, C. G. Feng, S. S. Zhang, M. H. Xu, G. Q.
References
Lin, Angew. Chem. Int. Ed. 2010, 49, 5780–5783.
[26] J. H. Fang, J. H. Jian, H. C. Chang, T. S. Kuo, W. Z.
Lee, P. Y. Wu, H. L. Wu, Chem. – Eur. J. 2017, 23,
1830–1838.
[1] M. Christmann, S. Brꢀse, Asymmetric Synthesis II:
More Methods and Applications; Wiley-VCH: Hoboken,
NJ, 2012.
[27] N. Tokunaga, Y. Otomaru, K. Okamoto, K. Ueyama,
R. Shintani, T. Hayashi, J. Am. Chem. Soc. 2004, 126,
13584–13585.
[2] I. Ojima, Catalytic Asymmetric Synthesis; Wiley-VCH:
Hoboken, NJ, 2010.
[3] J. C. Pastre, D. L. Browne, S. V. Ley, Chem. Soc. Rev.
2013, 42, 8849–8869.
[28] C. S. Marques, A. J. Burke, ChemCatChem 2011, 3,
635–645.
[4] M. Movsisyan, E. I. P. Delbeke, J. K. E. T. Berton, C.
Battilocchio, S. V. Ley, C. V. Stevens, Chem. Soc. Rev.
2016, 45, 4892–4928.
[29] K. Okamoto, T. Hayashi, V. H. Rawal, Chem.
Commun. 2009, 4815–4817.
[30] T. Hayashi, M. Takahashi, Y. Takaya, M. Ogasawara,
[5] S. Kobayashi, Chem. – Asian J. 2016, 11, 425–436.
J. Am. Chem. Soc. 2002, 124, 5052–5058.
[6] T. Hayashi, K. Ueyama, N. Tokunaga, K. Yoshida, J.
Am. Chem. Soc. 2003, 125, 11508–11509.
5
This article is protected by copyright. All rights reserved.