ORGANIC
LETTERS
2012
Vol. 14, No. 7
1824–1826
Palladium-Catalyzed Direct CꢀH Bond
Alkynylations of Heteroarenes Using
gem-Dichloroalkenes
Lutz Ackermann,* Christoph Kornhaass, and Yingjun Zhu
€
Institut fu€r Organische und Biomolekulare Chemie, Georg-August-Universitat,
€
Tammannstrasse 2, 37077 Gottingen, Germany
Received February 28, 2012
ABSTRACT
Palladium-catalyzed direct alkynylations of heteroarenes were accomplished with inexpensive gem-dichloroalkenes as user-friendly
electrophiles, which set the stage for a modular, step-economical synthesis of diversely decorated heteroaryl alkynes with ample scope.
Recent years have witnessed significant progress in the
direct functionalization of ubiquitous CꢀH bonds via their
use as latent functional groups.1 While a remarkable
advance has particularly been made in direct arylations
and alkenylations,2 CꢀH bond alkylations3 and alkynyla-
tions4 have unfortunately met thus far with rather limited
success. However, the direct alkynylation of heteroarenes
gained a considerable impetus by the recent use of 1-bro-
moalkynes as organic electrophiles (Scheme 1a).5 Unfor-
tunately, the required 1-haloalkynes are usually relatively
unstable, and a significantly more attractive strategy was
elegantly developed by Piguel and co-workers, exploiting
moisture-stable gem-dibromoalkenes6ꢀ8 as alkynylating
reagents (Scheme 1b).9 Yet, while versatile direct arylations
have been devised in recent years with aryl chlorides,10
inexpensive, but challenging, gem-dichloroalkenes11 have,
to the best of our knowledge, thus far not been utilized for
catalyzed direct alkynylations of unactivated CꢀH bonds,
(3) Ackermann, L. Chem. Commun. 2010, 46, 4866–4877.
(4) Reviews: (a) Messaoudi, S.; Brion, J.-D.; Alami, M. Eur. J. Org.
Chem. 2010, 6495–6516. (b) Dudnik, A. S.; Gevorgyan, V. Angew.
Chem., Int. Ed. 2010, 49, 2096–2098.
(5) For recent examples, see: (a) Ano, Y.; Tobisu, M.; Chatani, N.
Org. Lett. 2012, 14, 354–357. (b) Ano, Y.; Tobisu, M.; Chatani, N.
J. Am. Chem. Soc. 2011, 133, 12984–12986. (c) Nicolai, S.; Waser, J. Org.
Lett. 2011, 13, 6324–6327. (d) Kim, S. H.; Chang, S. Org. Lett. 2010, 12,
1868–1871. (e) Wei, Y.; Zhao, H.; Kan, J.; Su, W.; Hong, M. J. Am.
Chem. Soc. 2010, 132, 2522–2523. (f) Kawano, T.; Matsuyama, N.;
Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2010, 75, 1764–1766. (g)
Brand, J. P.; Charpentier, J.; Waser, J. Angew. Chem., Int. Ed. 2009, 48,
9346–9349. (h) Matsuyama, N.; Hirano, K.; Satoh, T.; Miura, M. Org.
Lett. 2009, 11, 4156–4159. (i) Tobisu, M.; Ano, Y.; Chatani, N. Org.
Lett. 2009, 11, 3250–3252. (j) Besselievre, F.; Piguel, S. Angew. Chem.,
Int. Ed. 2009, 48, 9553–9556. (k) Seregin, I. V.; Ryabova, V.; Gevorgyan,
V. J. Am. Chem. Soc. 2007, 129, 7742–7743 and references cited therein.
For examples of cross-dehydrogenative alkynylations, see: (l) Kitahara,
M.; Hirano, K.; Tsurugi, H.; Satoh, T.; Miura, M. Chem.;Eur. J. 2010,
16, 1772–1775. (m) Yang, L.; Zhao, L.; Li, C.-J. Chem. Commun. 2010,
46, 4184–4186. (n) Matsuyama, N.; Kitahara, M.; Hirano, K.; Satoh, T.;
Miura, M. Org. Lett. 2010, 12, 2358–2361.
(1) Recent representative reviews on CꢀH bond functionalizations:
(a) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012,
DOI: 10.1021/ar200185g. (b) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011,
111, 1215–1292. (c) Ackermann, L. Chem. Rev. 2011, 111, 1315–1345. (d)
Herrmann, P.; Bach, T. Chem. Soc. Rev. 2011, 40, 2022–2038. (e)
Ackermann, L.; Potukuchi, H. K. Org. Biomol. Chem. 2010, 8, 4503–
4513. (f) Wasa, M.; Engle, K. M.; Yu, J.-Q. Isr. J. Chem. 2010, 50, 605–
616. (g) Daugulis, O. Top. Curr. Chem. 2010, 292, 57–84. (h) Sun, C.-L.;
Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677–685. (i) Colby, D. A.;
Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624–655. (j)
Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig,
J. F. Chem. Rev. 2010, 110, 890–931. (k) Fagnou, K. Top. Curr. Chem.
2010, 292, 35–56. (l) Willis, M. C. Chem. Rev. 2010, 110, 725–748. (m)
Thansandote, P.; Lautens, M. Chem.;Eur. J. 2009, 15, 5874–5883 and
references cited therein.
(6) Comprehensive reviews on applications of gem-dihaloalkenes:
(a) Chelucci, G. Chem. Rev. 2012, DOI: 10.1021/cr200165q. (b) Legrand,
F.; Jouvin, K.; Evano, G. Isr. J. Chem. 2010, 50, 588–604.
(7) For selected recent examples of transition-metal-catalyzed CꢀH
bond functionalizations involving gem-dihaloalkenes, see: (a) Ye, S.;
Liu, G.; Pu, S.; Wu, J. Org. Lett. 2012, 14, 70–73. (b) Qin, X.; Cong, X.;
Zhao, D.; You, J.; Lan, J. Chem. Commun. 2011, 47, 5611–5613. (c)
Chai, D. I.; Lautens, M. J. Org. Chem. 2009, 74, 3054–3061. (d) Fayol,
A.; Fang, Y.-Q.; Lautens, M. Org. Lett. 2006, 8, 4203–4206. See also: (e)
Fang, Y.-Q.; Yuen, J.; Lautens, M. J. Org. Chem. 2007, 72, 5152–5160
and references cited therein.
(2) Selected reviews: (a) Hirano, K.; Miura, M. Synlett 2011, 294–
307. (b) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int.
Ed. 2009, 48, 9792–9826. (c) Alberico, D.; Scott, M. E.; Lautens, M.
Chem. Rev. 2007, 107, 174–238.
r
10.1021/ol300514d
Published on Web 03/28/2012
2012 American Chemical Society