liked congeners 14, interesting SAR resulted. C-linked 6-
membered heterocycles, both pyridines (18a,b) and a pyridazine
(18c) were inactive. A 4-pyrazole derivative (18d) was a modest
mGlu7 NAM (mGlu7 IC50 = 2.24 M, 10.2% L-AP4 Min),
whereas the N-Me congener (18e) lost all mGlu7 NAM activity.
However, an N-Me, 5-pyrazole analog (18f), a regioisomer of
inactive 18e, proved to be the most potent mGlu7 NAM in this
subseries (mGlu7 IC50 = 1.32 M, 20.6% L-AP4 Min).
microsomal incubations (rat CLhep = 27.7 mL/min/kg) and high
CNS penetration (rat Kp = 4.9, Kp,uu = 0.65). Not only was 14e
more potent than 5, at the 0.2 mg//kg IV PBL dose, 14 achieve
total brain levels of 456 nM, comparable to the in vitro IC50 (501
nM), whereas 5 was relegated as an in vitro tool due to low total
brain concentrations. However, free brain levels for 14e from the
PBL cassette study, based on rat brain homogenate binding,
suggest ~6 nM free brain concentration at 0.2 mg/kg (if dose
linear, doses of 10-30 mg/kg would afford free brain levels of
14e above the in vitro IC50). NAM 14e represented an
improvement over the prototypical NAMs 1-5, and argued for
additional exploration of this subseries. Efforts in this vein are
underway, and results will be reported in due course.
Scheme 3. Synthesis of putative mGlu7 NAM analogs 18.a
Acknowledgments
We thank the Warren Family and Foundation for establishing the
William K. Warren, Jr. Chair in Medicine (C.W.L.). The authors
also acknowledge funding by CDMRP Grant W81XWH-17-1-
0266 (to C.M.N.).
aReagents
and
conditions:
(a)
3,4-dimethoxybenzohydrazide,
propylphosphonic anhydride (T3P®), Et3N, 150 oC, mw, 1h, 43%; (b) R-
B(OH)2, Cs2CO3, Pd(dppf)Cl2, 1,4-dioxane:H2O (9:1), 90 oC, 16h, 36-60%.
Table 3. Structure and mGlu7 NAM activities of analogs 18.
AUTHOR INFORMATION
Corresponding Authors
*C.M.N.: phone, 615-343-4303; fax, 615-343-3088; e-mail,
*C.W.L.: phone, 615-322-8700; fax, 615-343-3088; e-mail,
ORCID 279 Craig W. Lindsley: 0000-0003-0168-1445
Cmpd
R
mGlu7
mGlu7
% L-AP4 Min
IC50 (M)a
References
18a
>30
>10
-
(1) N.M. Fisher, M. Seto, C.W. Lindsley, et al. Front. Mol. Neurosci. 11
(2018) article 387.
18b
18c
27.9
(2) G. Sansig, T.J. Bushell, V.R. Clarke, et al. J. Neurosci. 21 (2001) 8734.
(3) H. Goddyn, Z. Callaerts-Vegh, S. Stroobants, et al. Neurobiol. Learn.
Mem. 90 (2008)103.
(4) A. Palucha, K. Klak, P. Branski, et al. Psychopharmacology 194 (2007),
>10
27.6
555.
(5) Z. Callaerts-Vegh, T. Beckers, S.M. Ball, et al. J. Neurosci. 26 (2006)
6573.
18d
18e
2.24
>30
10.3
-
(6) K. Mitsukawa, C. Mombereau, E. Lötscher, E.;
Neuropsychopharmacology 31 (2006) 1112.
(7) C. Hölscher, S. Schmid, P.K. Pilz, et al. Learn. Mem 12 (2005), 450.
et al.
(8) C. Hölscher, S. Schmid, P.K. Pilz, et al. Behav. Brain Res. 154 (2004),
473.
(9) T.J. Bushell, G. Sansig, V.J. Collett, et al. ScientificWorldJournal 2
18f
1.32
3.53
20.6
49.2
(2002), 730.
(10) M. Masugi, M. Yokoi, R. Shigemoto, et al. J. Neurosci. 19 (1999) 955.
(11) N.M. Fisher, R.G. Gogliotti, S.A.D. Vermudez, et al. ACS Chem.
18g
Neurosci. 9 (2018) 2210.
(12) R.G. Gogliotti, R.K. Senter, N.M. Fisher, et al. Sci. Trans. Med. 9
aFor SAR determination, calcium mobilization assays with rat mGlu7/Gα15/HEK
cells performed in the presence of an EC80 fixed concentration of glutamate;
values represent (n = 1) independent experiments performed in triplicate.
(2017) eaai7459.
(13) N. Jalan-Sakrikar, J.R. Field, R. Klar, et al. ACS Chem. Neurosci. 5
(2014) 1221.
(14) C.M. Niswender and P.J. Conn. Ann. Rev. Pharmacol. Toxicol. 50
(2010) 295.
In summary, we detailed a diversity-oriented library approach
to rapidly assess diverse heterocycles as bioisosteric
replacements for a metabolically labile amide moiety within a
series of mGlu7 negative allosteric modulators (NAMs),
exemplified by 5. SAR rapidly identified a 1,3,4-oxadiazole ring
system as an effective bioisostere for the amide linker. Further
optimization of the southern heterocycle of this new chemotype
led to the discovery of VU6019278 (14e), a potent mGlu7 NAM
(IC50 = 501 nM, 6.3% L-AP4 Min) with favorable plasma protein
binding (rat fu= 0.10), low predicted hepatic clearance in
(15) C.W. Lindsley, K.A. Emmitte, C.R. Hopkins, et al. Chem. Rev. 116
(2016) 6707.
(16) M. Abe, M. Seto, R.G. Gogliotti, et al. ACS Med. Chem. Lett. 8 (2017)
1110.
(17) G. Suzuki, N. Tsukamoto, H. Fushiki, et al. J. Pharmacol. Exp. Ther.
232 (2007) 147.
(18) M. Nakamura, H. Kurihara, G. Suzuki, et al. Bioorg. Med. Chem. Lett.
20 (2010) 726.
(19) M. Kalinichev, M. Rouillier, F. Girard, et al. J. Pharmacol. Exp. Ther.
344 (2013) 624.