Please do not adjust margins
Organic & Biomolecular Chemistry
Page 4 of 5
DOI: 10.1039/C7OB02167D
ARTICLE
A possible mechanism was proposed for the present
sequential reaction (Scheme 6). Regioselective nucleophilic
ring-opening reaction of 1a with DMSO was an initial starting
point to drive this whole sequence of reactions. Then the ring-
Journal Name
temperature and poured into water (20 mL) and extracted
with ethyl acetate (5 × 10 mL). The combined organic extract
was washed with brine (20 mL), dried over Na2SO4 and
evaporated under reduced pressure. The residue was purified
by flash column chromatography on silica gel (petroleum
opening intermediate
six-membered transition state16f, g to afford the intermediate
Further removal of Me2S from the intermediate followed by
tautomerization led to the intermediate . At last, conjugate
addition between the newly generated nitrogen anion and
highly activated Michael-type acceptor in intermediate
A underwent hydrogen migration in a
B
.
ether/ethyl acetate, 5:1) to afford product 2.
B
D
Acknowledgements
D
would provide product 2a
.
This work was supported by the Foundation of NSFC
(21302140, 21402141 and 21502141), the Foundation of
Talent Introduction in Tianjin Normal University (5RL121 and
Me
S
Me
S
LA
O
Me
O
N
O
LA-
Tol
Me
O
Tol
S
N
Tol
S
O
N
O
O
S
H
H
O
O
S
LA
5RL122)
and
Tianjin Normal University Doctoral
CO2Me
CO2Me
Me
Me
Foundation (52XB1301), which are gratefully acknowledged.
MeO2C
CO2Me
O
MeO2C
CO2Me
B
A
1a
O
O
Tol
N
S
O
-Me2S
LA
tautomerization
NHTs
OMe
O
OH
NHTs
CO2Me
Notes and references
MeO
O
MeO2C
CO2Me
MeO2C
1
J. M. Bobbitt, Adv. Heterocycl. Chem., 1973, 15, 99.
C
D
LA
2
M. S. Christodoulou, F. Calogero, M. Baumann, A. N. García-
Argáez, S. Pieraccini, M. Sironi, F. Dapiaggi, R. Bucci, G.
Broggini, S. Gazzola, S. Liekens, A. Silvani, M. Lahtela-
Kakkonen, N. Martinet, A. Nonell-Canals, E. Santamaría-
Navarro, I. R. Baxendale, L. D. Via, D. Passarella, Eur. J. Med.
Chem., 2015, 92, 766.
O
Aza-Michael
addition
NTs
CO2Me
MeO2C
2a
3
S. Zhao, M. J. Totleben, J. P. Freeman, C. L. Bacon, G. B. Fox,
E. O'Driscoll, A. G. Foley, J. Kelly, U. Farrell, C. Regan, S. A.
Mizsak, J. Szmuszkovicz, Bioorg. Med. Chem., 1999, 7, 1637.
Scheme 6 A possible mechanism for the sequential reaction
Two one-step postfunctionalizations on the keto carbonyl
4
5
6
B. J. D. Wright, C. Chan, S. J. Danishefsky, J. Nat. Prod., 2008
71, 409.
,
group of 2a were carried out (Scheme 7). 2a reacted with
hydroxylamine hydrochloride in EtOH to afford product
4 in
T. Onoda, Y. Takikawa, T. Fujimoto, Y. Yasui, K. Suzuki, T.
Matsumoto, Synlett, 2009, 1041.
(a) Y. -R. Wu, Y. -B. Ma, Y. -X. Zhao, S. -Y. Yao, J. Zhou, Y.
Zhou, J. -J. Chen, Planta Med., 2007, 73, 787; (b) D. E. Games,
A. H. Jackson, N. A. Khan, D. S. Millington,
78% yield. The keto carbonyl group of 2a was reduced by
NaBH4 to provide product
OH
5
in 30% yield.
O
OH
N
NaBH4
NTs
NH2OH.HCl
Lloydia, 1974, 37, 581.
NTs
NTs
MeOH, 0 o
C
NaOAc
EtOH, reflux
7
8
(a) E. D. Phillips, S. C. Hirst, M. W. D. Perry, J. Withnall, J. Org.
Chem., 2003, 68, 8700; (b) M. S. Allen, P. Skolnick, J. M.
Cook, J. Med. Chem., 1992, 35, 368.
30%
MeO2C
CO2Me
MeO2C
CO2Me
78%
MeO2C
CO2Me
5
2a
4
(a) Y. Yuan, S. A. Zaidi, D. L. Stevens, K. L. Scoggins, P. D.
Mosier, G. E. Kellogg, W. L. Dewey, D. E. Selley, Y. Zhang,
Bioorg. Med. Chem., 2015, 23, 1701; (b) A. Bourry, R. Akue-
Gedu, J. -P. Henichart, G. Sanz, B. Rigo, Tetrahedron Lett.,
2004, 45, 2097; (c) R. M. Williams, P. P. Ehrlich, W. Zhai, J.
Hendrix, J. Org. Chem., 1987, 52, 2615; (d) L. L. Martin, S. J.
Scott, M. N. Agnew, L. L. Setescak, J. Org. Chem., 1986, 51,
3697; (e) G. Grethe, H. L. Lee, M. Uskoković, A. Brossi, J. Org.
Chem., 1968, 33, 491.
(a) F. Lieby-Muller, F. Marion, P. Schmitt, J. -P. Annereau, A.
Kruczynski, N. Guilbaud, C. Bailly, Bioorg. Med. Chem. Lett.,
2015, 25, 184; (b) H. Faltz, C. Bender, B. M. Woehrl, K. Vogel-
Bachmayr, U. Huebscher, K. Ramadan, J. Liebscher, Eur. J.
Org. Chem., 2004, 3484; (c) J. Ruiz, N. Sotomayor, E. Lete,
Org. Lett., 2003, 5, 1115; (d) H. Faltz, A. Radspieler, J.
Liebscher, Synlett, 1997, 1071.
Scheme 7 Derivatization of 2a
Conclusions
In conclusion, an efficient AgOTf-catalyzed reaction
involving sequential oxidative ring opening of aziridines and
aza-Michael addition has been developed. A series of 2,3-
dihydro-4(1H)-isoquinolones with structural diversity were
synthesized in moderate to good yields under mild conditions.
Further investigations on this kind of sequential reaction based
on ring opening of aziridines and Michael addition of electron-
deficient alkenes are ongoing in our laboratory.
9
10 (a) K. R. Prasad, C. Nagaraju, Org. Lett., 2013, 15, 2778; (b) L.
Wei, J. Zhang, Chem. Commun., 2012, 48, 2636.
Experimental
11 Selected reviews: (a) C. M. R. Volla, I. Atodiresei, M. Rueping,
Chem. Rev., 2014, 114, 2390; (b) H. Pellissier, Chem. Rev.,
2013, 113, 442; (c) J. C. Wasilke, S. J. Obrey, R. T. Baker, G. C.
Bazan, Chem. Rev., 2005, 105, 1001; (d) L. F. Tietze, Chem.
Rev. 1996, 96, 115; selected examples from recent years: (e)
Y. -Q. Xia, L. Dong, Org. Lett., 2017, 19, 2258; (f) S. Thapa, P.
Basnet, R. Giri, J. Am. Chem. Soc., 2017, 139, 5700; (g) S.
General procedure for synthesis of compound 2.
In the open air, AgOTf (0.04 mmol, 20% cat.) was added to a
solution of aziridine
1 (0.2 mmol) in dimethyl sulfoxide (4 mL)
at room temperature. The reaction mixture was stirred at 70
oC for 18h. Then the reaction mixture was cooled to room
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins