Journal of the American Chemical Society
Article
(9) Chan, L.; Taylor, M. S. Org. Lett. 2011, 13, 3090−3093.
(10) Gouliaras, C.; Lee, D.; Chan, L.; Taylor, M. S. J. Am. Chem. Soc.
2011, 133, 13926−13929.
(36) Sirkecioglu, O.; Karliga, B.; Talinli, N. Tetrahedron Lett. 2003,
44, 8483−8485.
(37) Maki, T.; Ushijima, N.; Matsumura, Y.; Onomura, O.
Tetrahedron Lett. 2009, 50, 1466−1468.
(11) Lee, D.; Newman, S. G.; Taylor, M. S. Org. Lett. 2009, 11,
5486−5489.
(38) Bessodes, M.; Boukarim, C. Synlett 1996, 11, 1119−1120.
(39) de la Zerda, J.; Barak, G.; Sasson, Y. Tetrahedron 1989, 45,
1533−1536.
(40) Chudzinski, M. G.; Chi, Y.; Taylor, M. S. Aust. J. Chem. 2011,
64, 1466−1469.
(41) Springsteen, G.; Wang, B. Tetrahedron 2002, 58, 5291−5300.
(42) In principle, Ph2BOH is itself a precatalyst, from which water
must be displaced for substrate binding. The NMR titrations indicate
that this displacement is relatively rapid. In addition, no increase in
initial rate was observed when Ph2BOH was subjected to TsCl/i-
Pr2NEt for 1 h before adding 4d.
(43) (a) Landis, C. R.; Halpern, J. J. Am. Chem. Soc. 1987, 109,
1746−1754. (b) Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002,
124, 10012−10014. (c) Pluth, M. D.; Bergman, R. G.; Raymond, K. N.
J. Am. Chem. Soc. 2008, 130, 11423−11429.
(12) Boronic acids have been employed as catalysts for dehydrative
acylation of amines and alcohols with carboxylic acids. The proposed
mechanism involves the formation of acyloxyboranes (i.e., electrophile
activation, rather than nucleophile activation). See: (a) Al-Zoubi, R.
M.; Marion, O.; Hall, D. G. Angew. Chem., Int. Ed. 2008, 47, 2876−
2879. (b) Maki, T.; Ishihara, K.; Yamamoto, H. Tetrahedron 2007, 63,
8645−8657.
(13) (a) James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Angew.
Chem., Int. Ed. 1996, 35, 1910−1922. (b) Davis, A. P.; James, T. D. In
Functional Synthetic Receptors; Schrader, T., Hamilton, A. D., Eds.;
Wiley: Weinheim, 2005; pp 45−109.
(14) For a review of catalytic reactions based on reversible, covalent
interactions: Tan, K. L. ACS Catal. 2011, 1, 877−886.
(15) (a) Oshima, K.; Kitazono, E.-i.; Aoyama, Y. Tetrahedron Lett.
1997, 38, 5001−5004. (b) Oshima, K.; Aoyama, Y. J. Am. Chem. Soc.
1999, 121, 2315−2316.
(16) Barton, D. H. R.; Ferreira, J. A.; Jazsberenyi, J. C. In Preparative
Carbohydrate Chemistry; Hanessian, S., Ed.; Marcel Dekker: New York,
1997; pp 85−101.
(44) Our ability to carry out kinetic studies of the glycosylation
reaction has been somewhat limited due to oxidation of the
diphenylborinic acid catalyst by Ag2O under the reaction conditions.
This catalyst decomposition pathway poses a challenge for monitoring
reactions to completion and for assessing the relative reactivities of
different organoboron catalysts.
(17) (a) Munavu, R. M.; Szmant, H. H. J. Org. Chem. 1976, 41,
1832−1836. (b) Shanzer, A. Tetrahedron Lett. 1980, 21, 221−222.
(c) Thiem, J.; Wessel, H.-P. Tetrahedron Lett. 1980, 21, 3571−3574.
(d) Tsuda, Y.; Nishimura, M.; Kobayashi, T.; Sato, Y.; Kanemitsu, K.
Chem. Pharm. Bull. 1991, 39, 2883−2887. (e) Boons, G.-J.; Castle, G.
H.; Chase, J. A.; Grice, R.; Ley, S. V.; Pinel, C. Synlett 1993, 12, 913−
914. (f) David, S.; Hanessian, S. Tetrahedron 1985, 41, 643−663.
(g) Grindley, T. B. Adv. Carbohydr. Chem. Biochem. 1998, 53, 17−142.
(18) Martinelli, M. J.; Vaidyanathan, R.; Pawlak, J. M.; Nayyar, N. K.;
Dhokte, U. P.; Doecke, C. W.; Zollars, L. M. H.; Moher, E. D.; Van
Khau, V.; Kosmrjl, B. J. Am. Chem. Soc. 2002, 124, 3578−3585.
(19) Voight, E. A.; Rein, C.; Burke, S. D. J. Org. Chem. 2002, 67,
8489−8499.
(45) Ritchie, C. D.; Sager, W. F. Prog. Phys. Org. Chem. 1964, 2, 323−
400.
(20) Bucher, B.; Curran, D. P. Tetrahedron Lett. 2000, 41, 9617−
9621.
(21) For discussions of the origins of regioselectivity in reactions of
stannylene acetals, see ref 17g and: (a) Grindley, T. B.; Thangarasa, R.
Can. J. Chem. 1990, 68, 1007−1019. (b) Kong, X.; Grindley, T. B. Can.
J. Chem. 1994, 72, 2405−2415. (c) Dong, H.; Zhou, Y.; Pan, X.; Cui,
F.; Liu, W.; Liu, J.; Ramstrom, O. J. Org. Chem. 2012, 77, 1457−1467.
̈
(22) Nishiguchi, T.; Taya, H. J. Am. Chem. Soc. 1989, 111, 9102−
9103.
(23) Zhu, P. C.; Lin, J.; Pittman, C. U., Jr. J. Org. Chem. 1995, 60,
5729−5731.
(24) Bornscheuer, U. T.; Kazlauskas, R. J. Hydrolases in Organic
Synthesis, Wiley-VCH: Weinheim, 2006.
(25) (a) Clarke, P. A. Tetrahedron Lett. 2002, 43, 4761−4763.
(b) Clarke, P. A.; Kayaleh, N. E.; Smith, M. A.; Baker, J. R.; Bird, S. J.;
Chan, C. J. Org. Chem. 2002, 67, 5226−5231.
(26) Wurz, R. P. Chem. Rev. 2007, 107, 5570−5595.
(27) Matsumura, Y.; Maki, T.; Murakami, S.; Onomura, O. J. Am.
Chem. Soc. 2003, 125, 2052−2053.
́
(28) Bouzide, A.; Sauve, G. Org. Lett. 2002, 4, 2329−2332.
(29) Choudary, B. M.; Chowdari, N. S.; Kantam, M. L. Tetrahedron
2000, 56, 7291−7298.
(30) Demizu, Y.; Matsumoto, K.; Onomura, O.; Matsumura, Y.
Tetrahedron Lett. 2007, 48, 7605−7609.
(31) Fiori, K. W.; Puchlopek, A. L. A.; Miller, S. J. Nature Chem.
2009, 1, 630−634.
(32) Wong, J. Y.; Leznoff, C. C. Can. J. Chem. 1973, 51, 2452−2456.
(33) (a) Garegg, P. J. Pure Appl. Chem. 1984, 56, 845−858.
(b) Barton, D. H. R.; Zhu, J. Tetrahedron 1992, 48, 8337−8346.
(34) Nagashima, N.; Ohno, M. Chem. Pharm. Bull. 1991, 39, 1972−
1982.
́
(35) Bouzide, A.; Sauve, G. Tetrahedron Lett. 1997, 38, 5945−5948.
8267
dx.doi.org/10.1021/ja302549c | J. Am. Chem. Soc. 2012, 134, 8260−8267