3134
F. Epifano et al. / Bioorg. Med. Chem. Lett. 22 (2012) 3130–3135
In terms of structure–activity relationships, the geranyl substi-
References and notes
tuted compounds were found to be in general more active than those
having an isopentenyloxy side chain. The higher activity recorded for
nelumal A (16) compared to the respective cinnamyl alcohol nelumol
1. Francis, G. A.; Fayard, E.; Picard, F.; Auwerx, J. Annu. Rev. Physiol. 2003, 65, 261.
2. Laudet, V.; Hänni, C.; Coll, J.; Catzeflis, F.; Stéhelin, D. EMBO J. 1992, 11, 1003.
3. Mangelsdorf, D. J.; Thummel, C.; Beato, M.; Herrlich, P.; Schütz, G.; Umesono,
K.; Blumberg, B.; Kastner, P.; Mark, M.; Chambon, P.; Evans, R. M. Cell 1995, 85,
835.
A (24) led us to hypothesize that the presence of an a,b-unsaturated
conjugated aldehyde as the C3 portion of the phenylpropanoid core of
these natural product, is a crucial structural requirement for the
biological activity, whereas its reduction to an allylic alcohol or its
oxidation to carboxylic acid tended to decrease or abolish the effect.
Nevertheless, another important structural feature, namely the 3,5-
dimethoxy substituted aromatic ring, could be revealed from results
reported in Table 1. In fact, comparing the activity of nelumal A (16)
and its analogue (2E)-3-(4-((E)-3,7-dimethylocta-2,6-dienyloxy)-3-
methoxyphenyl)acrylaldehyde (15), it was found that the first was
about 15-fold more potent than the latter as a FXR agonist, highlight-
ing the importance of substitution of the hydrogen in position 5 of the
aromatic ring with a methoxy group. Also the presence of a coumarin
nucleus, that remains chemically stable once inside the cell41 and so
cannot be related to cinnamic acid derivatives (6)–(9) in terms of SAR
considerations, seemed to provide a certain level of effective interac-
tion as a FXR agonist, auraptene (2) being the most potent compound
compared to the other three coumarins, lacinartin (3), 8-hydroxy-7-
isopentenyloxycoumarin (4), and collinin (5). In this case, however,
4. Wang, Y. D.; Chen, W. D.; Moore, D. D.; Huang, W. Cell Res. 2008, 24, 1087.
5. Makishima, M.; Okamoto, A. Y.; Repa, J. J.; Tu, H.; Learned, R. M.; Luk, A.; Hull,
M. V.; Lustig, K. D.; Mangelsdorf, D. J.; Shan, B. Science 1999, 284, 1362.
6. Zhang, Y.; Kast-Woelbern, H. R.; Edwards, P. A. J. Biol. Chem. 2003, 278, 104.
7. Wang, S.; Lai, K.; Moy, F. J.; Bhat, A.; Hartman, H. B.; Evans, M. J. Endocrinology
2006, 147, 4025.
8. Deng, R.; Yang, D.; Yang, J.; Yan, B. J. Pharmacol. Exp. Ther. 2006, 317, 317.
9. Suzuki, T.; Tamehiro, N.; Sato, Y.; Kobayashi, T.; Ishii-Watabe, A.; Shinozaki, Y.;
Nishimaki-Mogami, T.; Hashimoto, T.; Asakawa, Y.; Inoue, K.; Ohno, Y.;
Yamaguchi, T.; Kawanishi, T. J. Pharmacol. Sci. 2008, 107, 285.
10. Maloney, P. R.; Parks, D. J.; Haffner, C. D.; Fivush, A. M.; Chandra, G.; Plunket, K.
D.; Creech, K. L.; Moore, L. B.; Wilson, J. G.; Lewis, M. C.; Jones, S. A.; Willson, T.
M. J. Med. Chem. 2000, 43, 2971.
11. Akwabi-Ameyaw, A.; Bass, J. Y.; Caldwell, R. D.; Caravella, J. A.; Chen, L.; Creech,
K. L.; Deaton, D. N.; Madauss, K. P.; Marr, H. B.; McFadyen, R. B.; Miller, A. B.;
Navas, F., III; Parks, D. J.; Spearing, P. K.; Todd, D.; Williams, S. P.; Wisely, G. B.
Bioorg. Med. Chem. Lett. 2009, 19, 4733.
12. Chiang, P. C.; Thompson, D. C.; Ghosh, S.; Heitmeier, M. R. J. Pharm. Sci. 2011,
100, 4722.
13. Zhang, Y.; Edwards, P. A. FEBS Lett. 2008, 582, 10.
14. Epifano, F.; Genovese, S.; Menghini, L.; Curini, M. Phytochemistry 2007, 68, 939.
15. Bruyere, C.; Genovese, S.; Lallemand, B.; Ionescu-Motatu, A.; Curini, M.; Kiss, R.;
Epifano, F. Bioorg. Med. Chem. Lett. 2011, 21, 4173. and references cited herein.
16. Genovese, S.; Curini, M.; Epifano, F. Phytochemistry 2009, 70, 1082.
17. Lopez, L. S.; Lopes, A. A.; Batista, J. M.; Flausino, O.; Bolzani, V. S.; Kato, M. J.;
Furlan, M. Biores. Tech. 2010, 101, 4251.
18. Garneau, F. X.; Pichette, A.; Gagnon, H.; Jean, F. I.; Addae-Mensah, I.; Oseu-Safu,
D.; Asomaning, W. A.; Oteng-Yeboah, A.; Moudachirou, M.; Koumaglo, K. I. J.
Essent. Oil Res. 2000, 12, 757.
19. Cunsolo, F.; Ruberto, G.; Amico, V.; Piattelli, M. J. Nat. Prod. 1993, 9, 1598.
20. Bohlmann, F.; Abraham, W. R. Phytochemistry 1980, 19, 469.
21. Ito, C.; Mizuno, T.; Matsuoka, M.; Kimura, Y.; Sato, K.; Kajiura, I.; Omura, M.;
Juichi, M.; Furukawa, H. Chem. Pharm. Bull. 1988, 36, 3292.
22. Hammock, B. D.; Gill, S. S.; Casida, J. E. Pest. Biochem. Physiol. 1974, 4, 393.
23. Chaaib, F.; Queiroz, E. F.; Ndjoko, K.; Diallo, D.; Hostettmann, K. Planta Med.
2003, 69, 316.
24. Huang, H. Y.; Ishikawa, T.; Peng, C. F.; Tsai, I. L.; Chen, I. S. J. Nat. Prod. 2008, 71,
1146.
25. Venkateswarlu, S.; Panchagnula, G. K.; Subbaraju, G. V. Ind. J. Chem. B 2006, 45,
1063.
26. Analytical data of all adducts obtained by chemical synthesis described herein
were in full agreement with those already reported in the literature for the
same compounds (see Ref. 15).
only the O-geranyl side chain, together with the a-benzopyrone ring,
seemed to be a crucial structural requirement for the observed activ-
ity. Taken together, these considerations address to the fact that the
pattern of substitution in the aromatic ring is crucial to structurally
define a novel lead compound as FXR agonist. Moreover the configu-
ration of the conjugated double bond seems to have less importance
to this aim, being trans (like in nelumal A (16)) or cis, like in auraptene
(2), substituted compound active to a comparable extent. A more piv-
otal role on the contrary seems to be played by the terminal moiety of
the C3 skeleton in the phenylpropanoid core of these natural prod-
ucts, for which polar groups, like carboxylic acids or alcohols as found
in compounds (6)–(9) and (22)–(24) tended to decrease the activity
as FXR agonists, while moieties featured by low to medium polarity
like a lactone ring or an aldehyde, as found in nelumal A (16) and
auraptene (2), seemed to enhance this kind of effect.
In this manuscript we described for the first time the interac-
tion of some natural prenyloxyphenylpropanoids with FXR. We
discovered that three of these compounds could be claimed to
good to very good agonists of this class of receptor. Nelumal A
was seen to be the most potent one and on this basis it could be
useful to identify a novel class of FXR ligand using (16) as the lead
compound. The naturally widespread geranyloxycoumarin aurap-
tene (2) also displayed an appreciable amount of activity. As re-
ported previously,28 this compound is also found in several
edible fruits and vegetables. This consideration, together with the
statement that FXR plays a pivotal role in liver homeostasis and he-
patic syndromes, could be useful in exploring the effect of dietary
feeding with vegetable-containing auraptene, like agrumes, on the
chemoprevention of liver diseases. In the same way, we recently
provided evidence for the chemoprevention of colon cancer by
the same natural product.37,38,40
7-Isopentenyloxycoumarin (1): Anal. Calcd for C14H14O3: C, 73.03; H, 6.13; O,
20.84. Found: C, 73.01; H, 6.16; O, 20.81.
Auraptene (2): Anal. Calcd for C19H22O3: C, 76.48; H, 7.43; O, 16.09. Found: C,
76.52; H, 7.46; O, 16.05.
8-Hydroxy-7-isopentenyloxy-coumarin (3): Anal. Calcd for C14H14O4: C, 68.28; H,
5.73; O, 25.99. Found: C, 68.24; H, 5.76; O, 25.96.
Lacinartin (4): Anal. Calcd for C15H16O4: C, 69.22; H, 6.20; O, 24.59. Found: C,
69.19; H, 6.16; O, 24.55.
Collinin (5): Anal. Calcd for C20H24O4: C, 73.15; H, 7.37; O, 19.49. Found: C,
73.12; H, 7.34; O, 19.47.
Boropinic acid (6): Anal. Calcd for C15H18O4: C, 68.69; H, 6.92; O, 24.40. Found:
C, 68.72; H, 6.94; O, 24.36.
40-Geranyloxyferulic acid (7): Anal. Calcd for C20H26O4: C, 72.70; H, 7.93; O,
19.37. Found: C, 72.69; H, 7.94; O, 19.34.
Isopentenyloxy-p-coumaric acid (8): Anal. Calcd for C14H16O3: C, 72.39; H, 6.94;
O, 20.66. Found: C, 72.36; H, 6.99; O, 20.64.
Geranyloxy-p-coumaric acid (9): Anal. Calcd for C19H24O3: C, 75.97; H, 8.05; O,
15.98. Found: C, 75.93; H, 8.01; O, 15.96.
Valencic acid (10): Anal. Calcd for C12H14O3: C, 69.89; H, 6.84; O, 23.27. Found:
C, 69.92; H, 6.80; O, 23.24.
Geranyloxy-p-benzoic acid (11): Anal. Calcd for C17H22O3: C, 74.42; H, 8.08; O,
17.49. Found: C, 74.38; H, 8.03; O, 17.45.
Acknowledgment
p-Isopentenyloxybenzaldehyde (12): Anal. Calcd for C12H14O2: C, 75.76; H, 7.42;
O, 16.82. Found: C, 75.78; H, 7.38; O, 16.82.
Geranyloxyvanillin (13): Anal. Calcd for C18H24O3: C, 74.97; H, 8.39; O, 16.64.
Found: C, 74.99; H, 8.33; O, 16.65.
Boropinal (14): Anal. Calcd for C15H18O3: C, 73.15; H, 7.37; O, 19.49. Found: C,
73.18; H, 7.33; O, 19.45.
F.E. and S.G. wish to acknowledge financial support to the re-
search from the University ‘G. D’Annunzio’ of Chieti-Pescara.
(2E)-3-(4-((E)-3,7-Dimethylocta-2,6-dienyloxy)-3-methoxyphenyl)acrylaldehyde
(15): Anal. Calcd for C20H26O3: C, 76.40; H, 8.33; O, 15.27. Found: C, 76.45; H,
8.31; O, 15.25.
Supplementary data
Nelumal A (16): Anal. Calcd for C21H28O4: C, 73.23; H, 8.19; O, 18.58. Found: C,
73.20; H, 8.22; O, 18.55.
3,5-Dimethoxy-4-isopentenyloxybenzyl alcohol (17): Anal. Calcd for C14H20O4: C,
66.65; H, 7.99; O, 25.36. Found: C, 66.60; H, 7.94; O, 25.35.
Supplementary data associated with this article can be