Table 4 Si–H insertion reaction with methyl aryl-diazoacetate cata-
lyzed by 2
Entrya
Ar
X
Yieldb (%)
eec (%)
1
2
3
4
5
6
7
Ph
PhMe2Si
PhMe2Si
PhMe2Si
Et3Si
Et3Si
Et3Si
Et3Si
8a, 92
8b, 93
8c, 75
8d, 75
8e, 93
8f, 94
8g, 92
72
91
78
75
91
82
75
p-Br–C6H4
p-Cl–C6H4
Ph
p-Br–C6H4
p-Cl–C6H4
2-Naphthyl
a
Reaction conditions: 3 (0.4 mmol), X–H substrate (0.48 mmol), 2
c
b
(0.004 mmol), DCM (4 mL), ꢀ80 1C, 24 h. Isolated yield. Deter-
mined by chiral HPLC.
Scheme 3 The calculated potential energy surfaces of intermolecular
carbene insertion reaction pathway of I and II to the 1,4-cyclo-
hexadiene at the B3LYP/6-31G(d):LAN2DZ level.
as 0.01 mol% 2 as catalyst, the reaction proceeded smoothly in
DCM at ꢀ78 1C to afford the trans cyclopropyl ester 9 as the
major product in 80% yield with 88% ee and a TON of 8000
(Scheme 2). Upon comparing this result with that catalyzed by
[Ru(D4-Por*)(CO)(EtOH)]9 which effected styrene cyclopro-
panation at room temperature, the change from ruthenium(II)
to iridium(III) greatly speeds up the catalysis.
J.-C. Wang thanks the Croucher Foundation of Hong Kong
for a postgraduate studentship.
Notes and references
1 (a) Activation and Functionalization of C–H Bonds, ed.
K. I. Goldberg and A. S. Goldman, American Chemical Society,
USA, 2004; (b) Handbook of C–H Transformations: Applications in
Organic Synthesis, ed. G. Dyker, Wiley-VCH, Weinheim, 2005;
(c) C–H Activation, Top. Curr. Chem., J.-Q. Yu and Z. Shi, Spring-
er-Verlag, Berlin, 2010vol. 292.
2 Review: (a) T. Ye and M. A. Mckervey, Chem. Rev., 1994, 94, 1091;
(b) M. P. Doyle and D. C. Forbes, Chem. Rev., 1998, 98, 911;
(c) M. P. Doyle, M. A. McKervey and T. Ye, Modern Catalytic
Methods for Organic Synthesis with Diazo Compounds, John Wiley
and Sons, New York, 1998; (d) H. M. L. Davis and R. E.
J. Beckwith, Chem. Rev., 2003, 103, 2861; (e) H. M. L. Davies
and J. R. Denton, Chem. Soc. Rev., 2009, 38, 3061; (f) M. P. Doyle,
R. Duffy, M. Ratnikov and L. Zhou, Chem. Rev., 2010, 110, 704.
3 (a) H. M. L. Davies and D. Morton, Chem. Soc. Rev., 2011,
40, 1857; (b) H. M. L. Davis, T. Hansen and M. R. Churchill,
J. Am. Chem. Soc., 2000, 122, 3063; (c) H. M. L. Davis and
T. Hansen, J. Am. Chem. Soc., 1997, 119, 9075.
We performed DFT calculation on [Ir(TPP)(Me)]-catalyzed
carbene C–H insertion of 4 with 3a via two potential intermediates
I and II as shown in Scheme 3. The transformation of intermediate
I to III via transition state TSI–III requires 19.9 kcal molꢀ1 and this
process is endergonic by 10.6 kcal molꢀ1. Whereas carbene
insertion to 4 from intermediate II has an overall activation barrier
of only 16.2 kcal molꢀ1 via TSII–IV, which is 3.7 kcal molꢀ1
lower than the energy required in the intermediate I pathway.
The formation of product IV is significantly exothermic by
43.9 kcal molꢀ1. Intermediate II has a longer Ir–C(carbene) bond
length than I, (2.06 A vs. 1.90 A for II vs. I), revealing that II is
more facile to undergo the C–H insertion.
To get further information on the reaction mechanism, we
monitored the [Ir(TTP)(Me)(L)] 1-catalyzed carbene C–H insertion
of 4 with 3a by UV-visible absorption and 1H NMR spectro-
scopies. When 3a was added to a CH2Cl2 solution of 1, a shift of
the Soret band from 407 nm to 419 nm was observed. Upon
addition of 4, the Soret band shifted back to 407 nm. By 1H NMR
spectroscopy, addition of 3a to a CDCl3 solution of 1 caused a
downfield shift of the ligated methyl group from ꢀ6.30 ppm to
ꢀ5.71 ppm. The signal then shifted to ꢀ6.45 ppm upon addition of
excess 4. These findings revealed that 1 catalyzed carbene C–H
insertion proceeded through a short-lived intermediate.
4 H.-Y. Thu, G. S.-M. Tong, J.-S. Huang, S. L.-F. Chan, Q.-H. Deng
and C.-M. Che, Angew. Chem., Int. Ed., 2008, 47, 9747.
5 Review: (a) K. M. Kadish, K. M. Smith and R. Guilard, The
Porphyrin Handbook, Academic Press, San Diego, CA, 2000–2003,
vol. 1–20; (b) C.-Y. Zhou, J.-S. Huang and C.-M. Che, Synlett,
2010, 2681; (c) G. Simonneaux and P. Le Maux, Coord. Chem. Rev.,
2002, 228, 43; (d) C.-M. Che and J.-S. Huang, Coord. Chem. Rev.,
2002, 231, 151; (e) G. Maas, Chem. Soc. Rev., 2004, 33, 183;
(f) G. Simonneaux, P. Le Maux, Y. Ferrand and J. Rault-Berthelot,
Coord. Chem. Rev., 2006, 250, 2212.
6 H. Suematsu and T. Katsuki, J. Am. Chem. Soc., 2009, 131, 14218.
7 For recent synthesis and application of iridium porphyrin, see:
(a) H. Kanemitsu, R. Harada and S. Ogo, Chem. Commun., 2010,
46, 3083; (b) S. K. Yeung and K. S. Chan, Organometallics, 2005,
24, 6426; (c) M. Yanagisawa, K. Tashiro, M. Yamasaki and
T. Aida, J. Am. Chem. Soc., 2007, 129, 11912.
We acknowledge the support from The University of
Hong Kong (University Development Fund), Hong Kong
Research Grants Council (HKU 1/CRF/08), CAS-GJHZ200816
and CAS-Croucher Funding Scheme for Joint Laboratory.
8 For recent metal catalyzed Si–H insertion, see: (a) Y.-Z. Zhang,
S.-F. Zhu, L.-X. Wang and Q.-L. Zhou, Angew. Chem., Int. Ed.,
2008, 47, 8496; (b) Y. Yasutomi, H. Suematsu and T. Katsuki,
J. Am. Chem. Soc., 2010, 132, 4510.
9 C.-M. Che, J.-S. Huang, F.-W. Lee, Y. Li, T.-S. Lai, H.-L. Kwong,
P.-F. Teng, W.-S. Lee, W.-C. Lo, S.-M. Peng and Z.-Y. Zhou,
J. Am. Chem. Soc., 2001, 123, 4119.
Scheme 2
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 4299–4301 4301