A. Basu et al. / Bioorg. Med. Chem. 20 (2012) 2498–2505
2505
g0sp=gsp ¼ fðtcomplex ꢁ t0Þ=t0g=fðtcomplex ꢁ t0Þ=t0g
ð5Þ
2. Kulkari, S. K.; Dhir, A. Eur. J. Pharmacol. 2008, 589, 163.
3. Letasiova, S.; Jantova, S.; Cipak, L.; Muckova, M. Cancer Lett. 2006, 239, 254.
4. Zhang, R. X.; Dougherty, D. V.; Rosenblum, M. L. Chin. Med. J. 1990, 103, 658.
5. Birdsall, T. C.; Kelly, G. S. Altern. Med. Rev. 1997, 2, 94.
6. Imanshahidi, M.; Hosseinzadeh, H. Phytother. Res. 2008, 22, 999.
7. Liu, J. C.; Chan, P.; Chen, Y. J.; Tomlinson, B.; Hong, S. F.; Cheng, J. T.
Pharmacology 1999, 59, 283.
8. Cheuh, W. H.; Lin, J. Y. Food Chem. 2012, 131, 1263.
9. Shirwaikar, A.; Shirwaikar, A.; Rajendran, K.; Punitha, I. S. R. Biol. Pharm. Bull.
2006, 29, 1906.
where, gsp and gsp are specific viscosities of the alkaloid-DNA com-
plex and the DNA respectively; tcomplex, tcontrol, and to are the aver-
age flow times for the DNA-alkaloid complex, free DNA and buffer,
respectively. The relative increase in length of DNA, L/Lo, is obtained
from a corresponding increase in relative viscosity using the follow-
ing equation:
10. Peng, W. H.; Lo, K. L.; Lee, Y. H.; Hung, T. H.; Lin, Y. C. Life Sci. 2007, 81, 933.
11. Baird, A. W.; Taylor, C. T.; Brayden, D. J. Adv. Drug Delivery Rev. 1997, 23, 111.
12. Szmaz, Z.; Desperak-Naciazek, A.; Obojska, K. Dissertations Pharm. 1965, 17,
429.
13. Janbaz, K. H.; Gilani, A. H. Fitoterapia 2000, 71, 25.
14. Yan, D.; Jin, C.; Xiao, X. H.; Dong, X. P. J. Biochem. Biophys. Methods 2008, 70,
845.
15. Sun, Y.; Xun, K.; Wang, Y.; Chen, X. Anticancer Drugs 2009, 20, 757.
16. Tang, J.; Feng, Y.; Tsao, S.; Wang, N.; Curtain, R.; Wang, Y. J. Ethnopharmacol.
2009, 126, 5.
1=3
L=L0 ¼ ð
g=
g0
Þ
¼ 1 þ br
ð6Þ
where L and L0 are the contour lengths of DNA in the presence and
in the absence of the alkaloid and and g0 are the corresponding
values of intrinsic viscosity (approximated by the reduced viscosity
sp/C where C is the DNA concentration) and b is the slope of the
g
g = g
plot of L/L0 versus r.
17. Maiti, M.; Suresh Kumar, G. . Med. Res. Rev. 2007, 27, 649.
18. Maiti, M.; Suresh Kumar, G. Top. Heterocycl. Chem. 2007, 10, 155.
19. Pang, J. Y.; Qin, Y.; Chen, W. H.; Luo, G. A.; Jiang, Z. H. Bioorg. Med. Chem. 2005,
13, 5835.
20. Chen, W. H.; Pang, J. Y.; Qin, Y.; Peng, Q.; Cai, Z.; Jiang, Z. H. Bioorg. Med. Chem.
Lett. 2005, 15, 2689.
21. Pang, J. Y.; Long, Y. H.; Chen, W. H.; Jiang, Z. H. Bioorg. Med. Chem. 2007, 17,
1018.
22. Ma, Y.; Ou, T. M.; Hou, J. Q.; Lu, I. J.; Tan, J. H.; Gu, L. Q.; Huang, Z. S. Bioorg. Med.
Chem. 2008, 16, 7582.
4.9. Isothermal titration calorimetry
Isothermal titration calorimetry (ITC) experiments were carried
out on a VP-ITC microcalorimeter (ITC; MicroCal LLC). Instrument
control, data acquisition and analysis were performed using the
dedicated Origin 7.0 software following methods described previ-
ously.43,54 Briefly, aliquots of degassed alkaloid solutions were ti-
trated from the rotating syringe (stirring speed 290 rpm) into the
isothermal sample chamber containing DNA (1.4235 mL) solution.
The reference cell was filled with deionized water. The heat liber-
ated or absorbed with each injection of the alkaloid is observed as a
peak that corresponds to the power required to keep the sample
and reference solutions at identical temperature. The peaks pro-
duced over the entire course of the titration were converted to heat
output per injection by integration. The area under each heat burst
curve was determined by integration using the Origin software.
Control experiments were carried out to determine the heat contri-
bution from dilution arising from buffer into DNA and alkaloids
into buffer. The resulting corrected injection heats were plotted
as a function of the molar ratio. Experimental data were fitted
using a non linear least square minimization algorithm to one site
binding theoretical curves to provide the binding affinity (Ka), the
23. Li, T. K.; Bathory, E.; La Voie, E. J.; Srinivasn, A. R.; Olson, W. K.; Sauer, R. R.
Biochemistry 2000, 39, 7107.
24. Grycova, L.; Dostal, J.; Marek, R. Phytochemistry 2007, 68, 150.
25. Bhadra, K.; Maiti, M.; Suresh Kumar, G. DNA Cell Biol. 2008, 27, 675.
26. Sinha, R.; Suresh Kumar, G. J. Phys. Chem. B 2009, 113, 13410.
27. Bhadra, K.; Maiti, M.; Suresh Kumar, G. Biochim. Biophys. Acta 2008, 1780, 1054.
28. Arora, A.; Balasubramanian, C.; Kumar, N.; Agarwal, S.; Ojha, R. P.; Maiti, S. FEBS
J. 2008, 275, 3971.
29. Bhadra, K.; Suresh Kumar, G. Biochim. Biophys. Acta 2011, 1810, 485.
30. Franceschin, M.; Rossetti, L.; D’Ambrosio, A.; Schirripa, S.; Bianco, A.; Ortaggi,
G.; Savino, M.; Schultes, C.; Neidle, S. Bioorg. Med. Chem.Lett. 2006, 16, 1707.
31. Bhowmik, D.; Hossain, M.; Buzzetti, F.; D’Auria, R.; Lombardi, P.; Suresh Kumar,
G. J. Phys. Chem. B 2012, 116, 2314.
32. Islam, M. M.; Basu, A.; Hossain, M.; Sureshkumar, G.; Hotha, S.; Suresh Kumar,
G. DNA Cell Biol. 2011, 30, 123.
33. Li, X. L.; Hu, Y. J.; Wang, H.; Yu, B. Q.; Yue, H. L. Biomacromolecules 2012, 13, 873.
34. Ferraroni, M.; Bazzicalupi, C.; Bilia, A. R.; Gratteri, P. Chem. Commun. 2011, 47,
4917.
35. Pilch, D. S.; Yu, C.; Makhey, D.; La Voie, E. J.; Srinivasan, A. R.; Olson, W. K.;
Sauers, R. R.; Breslauer, K. J.; Geacintov, N. E.; Liu, L. F. Biochemistry 1997, 36,
12542.
binding stoichiometry (N), and the enthalpy of binding (D
H0).
The binding site size has been restricted during the fitting process
to values close to that obtained from the spectroscopic data. The
36. Krishnan, P.; Bastow, K. F. Anti-Cancer Drug Des. 2000, 15, 255.
37. Iwasa, K.; Kim, H. S.; Wataya, Y.; Lee, D. U. Eur. J. Med. Chem. 1998, 33, 65.
38. Chaires, J. B.; Dattagupta, N.; Crothers, D. M. Biochemistry 1982, 21, 3933.
39. Bhadra, K.; Maiti, M.; Suresh Kumar, G. Biochim. Biophys. Acta 2007, 1770, 1071.
40. McGhee, J. D.; von Hippel, P. H. J. Mol. Biol. 1974, 86, 469.
41. Bhadra, K.; Maiti, M.; Suresh Kumar, G. Chem. Biodivers. 2009, 6, 1323.
42. Bhadra, K.; Maiti, M.; Suresh Kumar, G. Biochim. Biophys. Acta 2008, 1780, 298.
43. Hossain, M.; Suresh Kumar, G. J. Chem. Thermodyn. 2009, 41, 764.
44. (a) Job, P. Ann. Chim. 1928, 9, 113; (b) Huang, C. Y. Methods Enzymol. 1982, 27,
509.
binding Gibb’s energy (D D
G0) and the entropic contribution (T S0)
were deduced from standard relationships,
D
G0 = ꢁRTlnKa
(R = 1.9872 cal molꢁ1 Kꢁ1, T = 298 K) and
D
G0 =
D
H0ꢁT
D
S0.
Acknowledgment
45. Hossain, M.; Suresh Kumar, G. Mol. Biosyst. 2009, 5, 1311.
46. Giri, P.; Suresh Kumar, G. Mol. Biosyst. 2008, 4, 341.
47. Maiti, M.; Nandi, R.; Chaudhuri, K. FEBS Lett. 1982, 142, 280.
48. Sinha, R.; Islam, M. M.; Bhadra, K.; Suresh Kumar, G.; Banerjee, A.; Maiti, M.
Bioorg. Med. Chem. 2006, 14, 800.
49. Lerman, L. S. J. Mol. Biol. 1961, 3, 18.
50. Islam, M. M.; Roy Chowdhury, S.; Suresh Kumar, G. J. Phys. Chem. B 2009, 113,
1210.
51. Chaires, J. B. Arch. Biochem. Biophys. 2006, 453, 26.
52. Jen-Jacobson, L.; Engler, L. E.; Jacobson, L. A. Structure 2000, 8, 1015.
53. Guthrie, K. M.; Parenty, A. D. C.; Smith, L. V.; Cronin, L.; Cooper, A. Biophys.
Chem. 2007, 126, 117.
54. Ren, J.; Jenkins, T. C.; Chaires, J. B. Biochemistry 2000, 39, 8439.
55. Murphy, F. V.; Churchill, M. E. Structure 2000, 15, R83.
56. Record, M. T., Jr.; Anderson, C. F.; Lohman, T. M. Q. Rev. Biophys. 1978, 11, 103.
57. Hossain, M.; Suresh Kumar, G. J. Chem. Thermodyn. 2010, 42, 1273.
58. Roy Chowdhury, S.; Islam, M. M.; Suresh Kumar, G. Mol. Biosyst. 2010, 6, 1265.
59. Giri, P.; Suresh Kumar, G. Arch. Biochem. Biophys. 2008, 474, 183.
This work was supported by grants from the CSIR NWP0036.
A. Basu is a NET-Senior Research Fellow of the University Grants
Commission, Government of India. The authors thank all the col-
leagues of the Chemistry and Biophysical Chemistry Laboratories
for cooperation and help during the course of this work. The critical
comments of the reviewers that enabled us to improve the manu-
script are also appreciated.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Choi, M. S.; Oh, J. H.; Kim, S. M.; Jung, H. Y.; Yoo, H. S.; Lee, Y. M.; Moon, D. C.;
Han, S. B.; Hong, J. T. Int. J. Oncol. 2009, 34, 1221.