number of modifications for preparing quinolines have
€
been reported, including Skraup, Combes, Miller, Friedlander,
Table 1. Optimization of the Reaction Parametersa
ConradꢀLimpach, and Pfitzinger syntheses,9 and transition-
metal-catalyzed synthetic methodologies.10 However, the
existing methods suffer from limited availability of sub-
strates, complicated multistep procedures, and low regio-
selectivity in most cases. Compared to the traditional
stepwise synthesis, the tandem (domino) reaction is the
most facile and economic synthetic approach. It enhances
the reaction efficiency and avoids the tedious step-by-step
separations and purifications of intermediates.11 An ex-
ample of preparing 2,3-disubstituted quinolines through a
rhodium-catalyzed tandem amination of aromatic olefins
with anilines was developed.12
entry
Fe (mol %)
solvent/T (°C)
ligandb
yieldc (%)
1
2
3
4
5
6
7
8
9
FeCl3 (10)
FeCl3 (10)
FeCl3 (10)
FeCl3 (10)
FeCl3 (10)
FeCl3 (10)
FeCl3 (10)
FeCl3 (10)
FeCl3 (10)
dioxane/110
CH3CN/80
C2H5OH/80
CH3NO2/100
toluene/110
(CH2Cl)2/80
(CH2Br)2/110
PEG-400/110
DMSO/110
DMF/110
38
26
18
20
17
25
13
23
0
Over the past decade, iron-based catalysts have signifi-
cantly risen to promote a broad range of organic transfor-
mations, such as cross-couplings, allylations, hydrogena-
tions, and direct CꢀH bond functionalizations owing to
their abundance, affordability, and environmental friend-
liness.13 Most recently, an FeCl3-catalyzed A3-reaction of
aldehydes, alkynes, and amines via a tandem process in
one-pot for preparing 2,4-disubstituted quinolines was
reported.14 As part of our continuing effort for accessing
natural-product-like compounds and the development of
iron-catalyzed organic transformations,15 we report herein
a novel FeCl3-promoted tandem reaction of anilines with
styrene oxides via CꢀC cleavage and CꢀH activation for
10 FeCl3 (10)
11 FeCl3 (10)
12 FeCl3 (10)
13 FeCl3 (10)
14 FeCl2 (10)
15 FeBr3 (10)
16 FeBr2 (10)
0
dioxane/110
dioxane/110
ꢀ/110
15d
38e
22f
16
29
15
10
8
dioxane/110
dioxane/110
dioxane/110
17 Fe(OTf)3 (10) dioxane/110
18 Fe(ClO4)3
dioxane/110
3
xH2O (10)
19 Fe2O3 (10)
dioxane/110
0
0
20 Fe2(acac)3 (10) dioxane/110
21 FeCl3 (10)
22 FeCl3 (10)
23 FeCl3 (10)
24 FeCl3 (10)
25 FeCl3 (10)
26 FeCl3 (10)
27 FeCl3 (10)
28 FeCl3 (10)
29 FeCl3 (10)
30 FeCl3 (20)
31 FeCl3 (25)
32 FeCl3 (35)
dioxane/110 PPh3
dioxane/110 PCy3
dioxane/110 Dppf
dioxane/110 DMEDA
dioxane/110 TMEDA
dioxane/110 Phen
dioxane/110 L-proline
dioxane/110 TMHD
dioxane/110 2-acetylcyclohexanone
dioxane/110
34
37
36
33
35
35
33
45
49
70
81
80
(9) (a) Jones, G. In Comprehensive Heterocyclic Chemistry, Katritzky,
A. R., Rees, A. R., Eds.; Pergamon, New York, 1984; Vol. 2, Part 2A, p 395.
(b) Chan, B. K.; Ciufolini, M. A. J. Org. Chem. 2007, 72, 8489. (c) Zong,
R.; Zhou, H.; Thummel, R. P. J. Org. Chem. 2008, 73, 4334. (d) Powell,
D. A.; Batey, R. A. Org. Lett. 2002, 4, 2913. (e) Cho, I. S.; Gong, L.;
Muchowski, J. M. J. Org. Chem. 1991, 56, 7288. (f) Riesgo, E. C.; Jin, X.;
Thummel, R. P. J. Org. Chem. 1996, 61, 3017. (g) Wu, Y.; Liu, L.; Li, H.;
Wang, D.; Chen, Y. J. Org. Chem. 2006, 71, 6592. (h) Denmark, S. E.;
Venkatraman, S. J. Org. Chem. 2006, 71, 1668. (i) Akbari, J.; Heydari,
A.; Kalhor, H. R.; Kohan, S. A. J. Comb. Chem. 2010, 12, 137.
(10) (a) Liang, Z.; Wu, J. Adv. Synth. Catal. 2007, 349, 1047.
(b) Tokunaga, M.; Eckert, M.; Wakatsuki, Y. Angew. Chem., Int. Ed.
1999, 38, 3222. (c) Korivi, R. P.; Cheng, C. J. Org. Chem. 2006, 71, 7079.
(d) McNaughton, B. R.; Miller, B. L. Org. Lett. 2003, 5, 4257. (e) Zhang,
Z.; Tan, J.; Wang, Z. Org. Lett. 2008, 10, 173. (f) Wu, J. L.; Cui, X. L.;
Chen, L. M.; Jiang, G. J.; Wu, Y. J. J. Am. Chem. Soc. 2009, 131, 13888.
(g) Takahashi, T.; Li, Y.; Stepnicka, P.; Kitamura, M.; Liu, Y.;
Nakajima, K.; Kotora, M. J. Am. Chem. Soc. 2002, 124, 576. (h) Cho,
C. S.; Kim, B. T.; Kim, T. J.; Shim, S. C. Chem. Commun. 2001, 2576.
(11) Tietze, L. F.; Brasche, G.; Gericke, K. Domino Reactions in
Organic Synthesis; Wiley-VCH: Weinheim, 2006.
dioxane/110
dioxane/110
a Reaction conditions: styrene oxide (1a, 2.0 mmol), aniline (2a,
1.0 mmol), Fe source (10ꢀ35 mol %), ligand (20 mol %) if necessary,
solvent (2.0 mL) at the temperature indicated in Table 1 for 12 h.
b PCy3 = tricyclohexylphosphine, Dppf = 1,10-bis(diphenylphosphino)-
ferrocene, DMEDA = N,N0-dimethylethylenediamine, TMEDA = N,N,
N0,N0,-tetramethylethylenediamine, Phen = 1,10-phenanthroline, TMHD =
2,2,6,6-tetramethyl-3,5-heptanedione. c Isolated yield. d 1a (1.0 mmol),
2a (1.0 mmol). e 1a (3.0 mmol), 2a (1.0 mmol). f 1a (5.0 mmol), 2a
(1.0 mmol) without additional solvent. Cu(OAc)2 was used instead of
FeCl3; no 3a was detected.
(12) Beller, M.; Thiel, O.; Trauthwein, H.; Hartung, C. G. Chem.;
Eur. J. 2000, 6, 2513.
(13) For selected reviews, see: (a) Enthaler, S.; Junge, K.; Beller, M.
Angew. Chem., Int. Ed. 2008, 47, 3317. (b) Correa, A.; Garcıa Mancheno,
´
the preparation of quinolines. It is important to note that
this is an inexpensive, regioselective, alternative, and effi-
cient approach to 3-arylquinolines from the simple and
readily available starting materials.
This novel tandem reaction of styrene oxide with aniline
was observed during our investigation on the preparation
of a 2-phenylindole framework via FeCl3-catalyzed ring
opening of styrene oxide (1a) with aniline (2a).16 Instead of
the anticipated 2-phenylindole product, 3-phenyquinoline
(3a) was isolated in 38% yield when the reaction was
€
O.; Bolm, C. Chem. Soc. Rev. 2008, 37, 1108. (c) Sherry, B. D.; Furstner,
A. Acc. Chem. Res. 2008, 41, 1500. (d) Sun, C.-L.; Li, B.-J.; Shi, Z.-J.
Chem. Rev. 2011, 111, 1293. (e) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L.
€
Chem. Rev. 2004, 104, 6217. For selected examples, see: (f) Furstner, A.;
Majima, K.; Martin, R.; Krause, H.; Kattnig, E.; Goddard, R.; Christian,
W. L. J. Am. Chem. Soc. 2008, 130, 1992. (g) Chen, M. S.; White, M. C.
€
Science 2007, 318, 783. (h) Furstner, A. Angew. Chem., Int. Ed. 2009, 48,
1364. (i) Buchwald, S. L.; Bolm, C. Angew. Chem., Int. Ed. 2009, 48, 5586.
(j) Fan, J.; Gao, L.; Wang, Z. Chem. Commun. 2009, 5021. (k) Fan, J.;
Wang, Z. Chem. Commun. 2008, 5381.
(14) (a) Cao, K.; Zhang, F.-M.; Tu, Y.-Q.; Zhou, X.-T.; Fan, C.-A.
Chem.;Eur. J. 2009, 15, 6332. (b) Zhang, Y.; Li, P.; Wang., L.
J. Heterocycl. Chem. 2011, 48, 153.
(15) (a) Li, P.; Zhang, Y.; Wang, L. Chem.;Eur. J. 2009, 15, 2045.
(b) Liu, J.; He, T.; Wang, L. Tetrahedron 2011, 67, 3420. (c) Wang, B.;
Wu, H.; Li, P.; Wang, L. Chem. Commun. 2010, 46, 5891. (d) Wang, M.;
Ren, K.; Wang, L. Adv. Synth. Catal. 2009, 351, 1586.
(16) Cho, C. S.; Kim, J. H.; Choi, H.-J.; Kim, T.-J.; Kim, T.-J.; Shim,
S. C. Tetrahedron Lett. 2003, 44, 2975.
Org. Lett., Vol. 14, No. 9, 2012
2207