LETTER
TIPSOTf-Promoted Tandem Reaction of Epoxides to Cyclopentanes
461
Nakajima, S.; Takanami, T. Chem. Commun. 2002, 2570.
(j) Deng, X.-M.; Sun, X.-L.; Tang, Y. J. Org. Chem. 2005,
70, 6537.
Although tandem reaction products 25a, 25b and 27a, 27b
were also obtained from epoxides 24 and 26, respectively,
in the reaction of 26 the starting material was recovered in
22% yield after 15 hours (entries 5 and 6). Furthermore,
epoxide 28 was recovered in 82% yield, even after the re-
action was carried out at 0 °C for one hour and then under
reflux for 20 hours (entry 7). These results indicate that
the first epoxide rearrangement promoted by bulky
TIPSOTf is subtly influenced by steric circumstances
around the epoxide function. Next, aromatic rings were
investigated in place of double bonds as the intramolecu-
lar nucleophile. Although epoxide 29 was only rearranged
into aldehyde 30 (entry 8), epoxide 31 bearing a more nu-
cleophilic dimethoxyphenyl group provided a tandem re-
action product 32, demonstrating that the second
cyclization can form not only five-membered rings but
also a six-membered ring (entry 9).
(5) (a) Maruoka, K.; Ooi, T.; Yamamoto, H. J. Am. Chem. Soc.
1989, 111, 6431. (b) Maruoka, K.; Ooi, T.; Nagahara, S.;
Yamamoto, H. Tetrahedron 1991, 47, 6983. (c) Suda, K.;
Kikkawa, T.; Nakajima, S.; Takanami, T. J. Am. Chem. Soc.
2004, 126, 9554. (d) Suda, K.; Nakajima, S.; Satoh, Y.;
Takanami, T. Chem. Commun. 2009, 1255.
(6) Jung, M. E.; D’Amico, D. C. J. Am. Chem. Soc. 1995, 117,
7379.
(7) (a) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew.
Chem. Int. Ed. 2006, 45, 7134. (b) Tietze, L. F.; Brasche,
G.; Gericke, K. Domino Reactions in Organic Synthesis;
Wiley-VCH: Weinheim, 2006, 672. (c) Ho, T.-L. Tandem
Organic Reactions; Wiley: New York, 1992, 502.
(8) Morimoto, Y.; Nishikawa, Y.; Ueba, C.; Tanaka, T. Angew.
Chem. Int. Ed. 2006, 45, 810.
(9) Typical Procedure for the Tandem Reaction: To a
solution of epoxide 7b (R1 = TMS, 30.0 mg, 0.100 mmol),
prepared from 7a (R1 = H, ref. 8) according to footnote d in
Table 1, in nitromethane (1.0 mL) were successively added
dropwise 2,6-lutidine (92 mL, 0.703 mmol) and triisopropyl-
silyl triflate (0.135 mL, 0.502 mmol) under a nitrogen
atmosphere at 0 °C, and the mixture was stirred at the same
temperature for 45 min. H2O was added to the solution, and
the aqueous layer was extracted with hexane. The organic
layer was washed with brine, dried over anhyd Na2SO4, and
concentrated under reduced pressure. The residue was
purified by flash column chromatography (hexane–benzene,
98:2) on silica gel to afford a mixture of cyclopentanes 12a
and 12b (29.4 mg, 64% yield) in a ratio of 3.2:1 as a colorless
oil; Rf 0.58 (hexane–benzene, 95:5). 1H NMR (400 MHz,
CDCl3): d = 4.77 (s, 1 H), 4.71 (s, 1 H), 3.88 (d, J = 6.6 Hz,
0.24 H), 3.82 (d, J = 7.3 Hz, 0.76 H), 2.53–2.64 (m, 1 H),
1.14–1.93 (m, 8 H), 1.72 (s, 3 H), 1.22 (s, 1.44 H), 1.20 (s,
4.56 H), 0.97–1.12 (m, 21 H), 0.94 (s, 0.72 H), 0.90 (s, 2.28
H), 0.10 (s, 9 H). 13C NMR (75 MHz, CDCl3): d = 147.3,
147.2, 111.1, 110.7, 84.1, 77.2, 74.0, 54.8, 53.7, 45.6, 45.4,
39.9, 39.4, 35.3, 34.8, 34.2, 29.8, 26.7, 24.1, 20.0, 19.7, 18.6,
18.5, 18.4, 13.4, 13.3, 2.7, 2.6. IR (neat): 3076, 1641, 1462,
1378, 1107, 882 cm–1. HRMS (FAB): m/z [M – H+] calcd for
C26H53O2Si2: 453.3584; found: 453.3591.
In conclusion, we have demonstrated that the TIPSOTf-
promoted tandem reaction via stereospecific rearrange-
ment of trisubstituted epoxides into aldehydes followed
by the electrophilic cyclization of the aldehydes generated
five- and six-membered ring compounds. Further scope
and limitations of the tandem reaction and its application
to biologically important natural products are under inves-
tigation.
Supporting Information for this article is available online at
Acknowledgment
This work was financially supported by the Asahi Glass Foundation
and Grants-in-Aid for Scientific Research on Basic Research (B)
and (C) from the Japan Society for the Promotion of Science.
References and Notes
(10) (a) Murata, S.; Suzuki, M.; Noyori, R. J. Am. Chem. Soc.
1980, 102, 3248. (b) Noyori, R.; Murata, S.; Suzuki, M.
Tetrahedron 1981, 37, 3899.
(1) For reviews, see: (a) Parker, R. E.; Issacs, N. S. Chem. Rev.
1959, 59, 737. (b) Rao, A. S.; Paknikar, S. K.; Kirtane, J. G.
Tetrahedron 1983, 39, 2323. (c) Smith, J. G. Synthesis
1984, 629.
(11) Compound 16a: Rf = 0.62 (hexane). 1H NMR (400 MHz,
CDCl3): d = 4.77–4.81 (m, 1 H), 4.68–4.72 (m, 1 H), 4.24 (d,
J = 7.3 Hz, 1 H), 3.44 (d, J = 9.5 Hz, 1 H), 3.30 (d, J = 9.8
Hz, 1 H), 2.59 (dt, J = 9.9, 7.1 Hz, 1 H), 1.82–1.93 (m, 1 H),
1.74 (dt, J = 12.2, 8.4 Hz, 1 H), 1.72 (s, 3 H), 1.32–1.42 (m,
1 H), 1.27 (ddd, J = 12.4, 7.9, 4.6 Hz, 1 H), 1.00–1.09 (m, 21
H), 0.90 (s, 9 H), 0.88 (s, 3 H), 0.03 (s, 3 H), 0.02 (s, 3 H).
13C NMR (75 MHz, CDCl3): d = 147.3, 111.0, 77.3, 67.6,
54.2, 48.0, 32.6, 26.8, 25.9, 19.6, 18.4, 18.3, 17.9, 13.3, –5.5,
–5.6. IR (neat): 3079, 1644, 1463, 1254, 1087, 835 cm–1.
HRMS (FAB): m/z [M+] calcd for C25H52O2Si2: 440.3506;
found: 440.3515.
(2) For a review, see: Silva, L. F. Jr. Tetrahedron 2002, 58,
9137.
(3) For a review, see: Rickborn, B. Acid-Catalyzed
Rearrangements of Epoxides, In Comprehensive Organic
Synthesis, Vol. 3; Trost, B. M.; Fleming, I., Eds.; Pergamon:
Oxford, 1991, Chap. 3.3, 733.
(4) (a) Maruoka, K.; Murase, N.; Bureau, R.; Ooi, T.;
Yamamoto, H. Tetrahedron 1994, 50, 3663.
(b) Kulasegaram, S.; Kulawiec, R. J. J. Org. Chem. 1994, 59,
7195. (c) Takanami, T.; Hirabe, R.; Ueno, M.; Hino, F.;
Suda, K. Chem. Lett. 1996, 25, 1031. (d) Sudha, R.;
Narashimhan, K. M.; Saraswathy, V. G.; Sankararaman, S.
J. Org. Chem. 1996, 61, 1877. (e) Ranu, B. C.; Jana, U.
J. Org. Chem. 1998, 63, 8212. (f) Suda, K.; Baba, K.;
Nakajima, S.; Takanami, T. Tetrahedron Lett. 1999, 40,
7243. (g) Anderson, A. M.; Blazek, J. M.; Garg, P.; Payne,
B. J.; Mohan, R. S. Tetrahedron Lett. 2000, 41, 1527.
(h) Martínez, F.; Campo, C.; Llama, E. F. J. Chem. Soc.,
Perkin Trans. 1 2000, 1749. (i) Suda, K.; Baba, K.;
Compound 16b: Rf 0.51 (hexane). 1H NMR (400 MHz,
CDCl3): d = 4.74–4.78 (m, 1 H), 4.70–4.74 (m, 1 H), 3.97 (d,
J = 7.1 Hz, 1 H), 3.63 (d, J = 10.0 Hz, 1 H), 3.50 (d, J = 10.0
Hz, 1 H), 2.63 (dt, J = 9.3, 7.0 Hz, 1 H), 1.81–1.94 (m, 2 H),
1.72 (s, 3 H), 1.32–1.44 (m, 1 H), 1.18–1.31 (m, 1 H), 0.97–
1.10 (m, 21 H), 1.02 (s, 3 H), 0.90 (s, 9 H), 0.04 (s, 3 H), 0.03
(s, 3 H). 13C NMR (75 MHz, CDCl3): d = 147.2, 110.9, 83.9,
66.5, 55.3, 48.0, 33.1, 27.3, 26.0, 22.9, 19.9, 18.39, 18.37,
18.32, 13.2, –5.45, –5.49. IR (neat): 3079, 1642, 1463, 1086,
© Thieme Stuttgart · New York
Synlett 2012, 23, 458–462