other protective additives. Ligations are performed at low
concentrations under open air conditions on oxidation-sensitive
peptides, i.e.: containing methionine, cysteine, arginine, tyrosine,
tryptophan and histidine. The applicability of this methodology
to other bio(macro)molecules is currently studied. We believe
that our preliminary results pave the way for a new genera-
tion of CuAAC catalysts that will make this cycloaddition
a user-friendly tool for the bioconjugation of peptides and
proteins.
We thank Philippe Marceau for synthesizing the peptides.
Notes and references
Fig. 3 Kinetics of the formation of 13 at pH 6.2 and 7.6 (ESIw).
z SIMes = 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene; Icy =
1,3-bis(cyclohexyl)imidazol-2-ylidene; TEABC: triethylammonium
bicarbonate; HEPES: 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic
acid; TRIS: tris(hydroxymethyl)methylamine; MES: 2-(N-morpholino)-
ethanesulfonic acid; NMP: N-methyl pyrrolidone; HFIP: hexafluoroiso-
propanol; TCEP: tris(2-carboxyethyl)phosphine.
y Our result contrasts with what was reported with the parent SIMes
and IMes ligands which afford a mixture of homo and heteroleptic
complexes (23/77).12 Steric hindrance and/or charge repulsion in 5
could account for this result.
1 (a) C. W. Tornøe and M. Meldal, in Peptides—The wave of the
future, ed. M. Lebl and R. A. Houghten, Kluwer Academic
Publishers, Dordrecht, 2001, pp. 263–264; (b) H. C. Kolb,
M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed., 2001,
40, 2004–2021; (c) C. W. Tornøe, C. Christensen and M. Meldal,
J. Org. Chem., 2002, 67, 3057–3064; (d) M. Meldal and C. W.
Tornøe, Chem. Rev., 2008, 108, 2952–3015.
Scheme 3 Catalyzed reactions of peptides in 0.2 M HEPES, pH 7.6.
2 R. K. V. Lim and Q. Lin, Chem. Commun., 2010, 46, 1589–1600.
3 (a) V. Hong, S. I. Presolski, C. Ma and M. G. Finn, Angew. Chem.,
Int. Ed., 2009, 48, 9879–9883; (b) V. Hong, A. K. Udit, R. A. Evans
and M. G. Finn, ChemBioChem, 2008, 9, 1481–1486; (c) A. Kumar,
K. Lib and C. Cai, Chem. Commun., 2011, 47, 3186–3188; (d) I. E.
Valverde, F. Lecaille, G. Lalmanach, V. Aucagne and A. F. Delmas,
Angew. Chem., Int. Ed., 2012, 51, 718–722; (e) S. I. Presolski,
V. Hong, S.-H. Cho and M. G. Finn, J. Am. Chem. Soc., 2010,
132, 14570–14576.
4 (a) S. Dıez-Gonzalez, A. Correa, L. Cavallo and S. P. Nolan,
Chem.–Eur. J., 2006, 12, 7558–7564; (b) S. Dıez-Gonzalez and S. P.
Nolan, Angew. Chem., Int. Ed., 2008, 47, 8881–8884; (c) M. L.
Teyssot, A. Chevry, M. Traıkia, M. El-Ghozzi, D. Avignant and
A. Gautier, Chem.–Eur. J., 2009, 15, 6322–6326; (d) M.-L. Teyssot,
L. Nauton, J.-L. Canet, F. Cisnetti, A. Chevry and A. Gautier,
Eur. J. Org. Chem., 2010, 3507–3515; (e) W. Wang, J. Wu, C. Xia
and F. Li, Green Chem., 2011, 13, 3440–3445.
The three alkyne-containing peptides 14–16 were reacted at
a dilute 1 mM concentration with five fold excess of the
azides N3Tyr-OH (11a) or (S)-2-azido-3-phenyl-propanoic
acid (N3Phe–OH, 11b) in a 8–2 mixture of 0.2 M HEPES,
pH 7.6 and HFIP (Scheme 3).
The reactions were run overnight in an open flask at RT,
then worked up through a C18 solid phase extraction column
and analyzed by standard reverse phase HPLC/HRMS (ESIw).
The reaction of thiol-containing 14 gives a full conversion to the
triazole products using either 40 or 100 mol% of 5. As expected
from a long stay at neutral pH under non-deoxygenated
conditions, the products were obtained as the homodimeric
disulfides, but no over-oxidation into disulfide oxide, sulfenic
or sulfonic acids could be detected. Therefore, treatment of the
crude mixture with 5-fold excess of TCEP cleanly delivers the
expected products 14a,b (ESIw). The conversion of sulfide-
containing 15 into 15a,b was also clean and complete using
both 40 and 100 mol% of catalyst and no oxidation to the
methionine sulfoxide was observed. Regarding imidazole-
containing 16, an incomplete reaction occurred using 40 mol%
of catalyst in 0.2 M HEPES, pH 7.6 (B60% conversion).
Nevertheless, a total conversion was reached with one full
equivalent of 5 to afford 16a,b (ESIw). No trace of oxidation into
the imidazolone commonly observed under standard CuAAC
catalytic systems was detected.3a The reaction also applies quanti-
tatively to peptide 17 (ESIw), which corresponds to the N-terminal
octapeptide repeat region of the human prion protein (PrPc)
sequence and is known to strongly bind CuII.11 This proves that
good copper(II) chelators do not inhibit CuAAC mediated by 5.
In conclusion we report the first soluble copper(I)–NHC
that can realize CuAAC reactions with peptides in buffered
aqueous media in the absence of sacrificial reducing agents and
5 For
a review on hydrophilic catalysts: K. H. Shaughnessy,
Chem. Rev., 2009, 109, 643–710.
6 S. Leuthaeuber, V. Schmidts, C. M. Thiele and H. Plenio,
Chem.–Eur. J., 2008, 14, 5465–5481.
7 J. Andersen, U. Madsen, F. Bjorkling and X. F. Liang, Synlett,
2005, 2209–2213.
8 (a) E. D. Goddard-Borger and R. V. Stick, Org. Lett., 2007, 9,
3797–3800; (b) N. Fischer, E. D. Goddard-Borger, R. Greiner,
T. M. Klapotke, B. W. Skelton and J. Stierstorfer, J. Org. Chem.,
2012, 77, 1760–1764.
9 HEPES and MES were originally designed to minimize metal
chelation, see: N. E. Good, G. D. Winget, W. Winter,
T. N. Connolly, S. Izawa and R. M. M. Singh, Biochemistry,
1966, 5, 467–477.
10 E. L. Ash, J. L. Sudmeier, R. M. Day, M. Vincent, E. V. Torchilin,
K. Coffman Haddad, E. M. Bradshaw, D. G. Sanford and
W. W. Bachovchin, Proc. Natl. Acad. Sci. U. S. A., 2000, 97,
10371–10376.
11 (a) M. Łuczkowski, H. Kozlowski, M. Stawikowski, K. Rolka,
E. Gaggelli, D. Valensin and G. Valensin, J. Chem. Soc., Dalton
Trans., 2002, 2269–2274; (b) A. P. Garnett and J. H. Viles, J. Biol.
Chem., 2003, 278, 6795–6802.
12 S. Dıez-Gonzalez, E. C. Escudero-Adan, J. Benet-Buchholz,
E. D. Tevens, A. M. Z. Slawin and S. P. Nolan, Dalton Trans.,
2010, 39, 7595–7606.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 4005–4007 4007