Scheme 2. Catalytic Synthesis of Alleneylidene Tetrahydroquinolinesa
a Reactions carried out on a 0.09 mmol scale with 2 mol % catalyst in 1 mL of CH3CH under an air atmosphere for 16 h unless otherwise noted.
Isolated yields of purified products indicated. b10 mol % catalyst. cFrom 2-carboxybenzaldehyde. d1.15 mmol scale.
observed isomerization of the allene to the conjugated
diene,12 demonstrating that these products are stable under
the acidic reaction conditions.
observed the formation of the tetracyclic benzofuran 4 in
91% yield (eq 1). Pd(0)-catalyzed cyclization of phenols
onto allenes has not been reported previously, although
cyclization of phenols and alcohols in the presence of elec-
trophilic metals is known.14,15 In this case, Pd(OAc)2 and
PdCl2 did not catalyze the formation of 4 at all, arguing
against an electrophilic activation of the allene. Rather,
this transformation may involve the formation of a
Pd(II)ꢀH species via protonation of Pd(0) with phenol.
Hydrometalation followed by reductive elimination
would yield the observed product (Scheme 3).16 Simi-
larly, carboxylic acid 3ai0 underwent arylation and
cyclization to form lactone 5 (eq 3). Here, aryl addition
to the allene likely generated a Pd(π-allyl) species that
was trapped by the carboxylate.17 Cyclization of both
the phenol and the carboxylic acid occurred with com-
plete control of relative stereochemistry to yield the cis-
fused 5,6-ring systems.
Substituted anilines participated in the cyclocondensa-
tion with variable results (Table 2). Methyl substituted
silane 1b condensed with aromatic and aliphatic aldehydes
and with isatin to generate the corresponding allenes in
high yield. In contrast, amide- or ester-substituted sub-
strates 1c and 1d only provided clean products with certain
aldehydes. Aliphatic aldehydes reacted cleanly (entries
4ꢀ5), but most aromatic aldehydes were converted into
unstable products. Thus, analysis of crude reaction mix-
tures indicated the formation of the expected heterocycle
(3), but attempts to isolate pure samples proved unsuccess-
ful because the products decomposed into complex mix-
tures.
With a high-yielding and general cyclocondensation
in hand, we sought conditions under which the allenes
might beconvertedtomorecomplex polycyclicproducts.13
Accordingly, we exposed allene 3g to Pd(PPh3)4 and
Finally, exposure of allene 3b to Pd(PPh3)4 and a series
of aryl iodides resulted in the formation of a mixture of
dihydroquinolines and quinolines (6, eq 3). Oxidation
of the crude reaction mixture yielded the arylated
quinolines (6) in uniformly high yield. The tandem
(13) (a) Painter, T. O.; Wang, L.; Majumder, S.; Xie, X.-Q.; Brummond,
K. M. ACS Comb. Sci. 2011, 13, 166. (b) Huryn, D. M.; Brodsky,
J. L.; Brummond, K. M.; Chambers, P. G.; Eyer, B.; Ireland, A. W.;
Kawasumi, M.; LaPorte, M. G.; Lloyd, K.; Manteau, B.; Nghiem, P.;
Quade, B.; Seguin, S. P.; Wipf, P. Proc. Natl. Acad. Sci. U.S.A. 2011,
108, 6757.
(15) Intermolecular addition of phenols to allene catalyzed by (a)
Pd(0): Grigg, R.; Kongkathip, N.; Kongkathip, B.; Luangkamin, S.;
Dondas, H. A. Tetrahedron 2001, 57, 7965. (b) Phosphine: Meng, X.;
Huang, Y.; Chen, R. Org. Lett. 2008, 11, 137. (c) DBU: Kumar, N. N. B.;
Reddy, M. N.; Swamy, K. C. K. J. Org. Chem. 2009, 74, 5395. (d)
Uncatalyzed: Nixon, N. S.; Scheinmann, F.; Suschitzky, J. L. Tetrahe-
dron Lett. 1983, 24, 597.
(16) (a) Trost, B. M.; Xie, J.; Sieber, J. D. J. Am. Chem. Soc. 2011,
133, 20611. (b) Kim, H.; Rhee, Y. H. J. Am. Chem. Soc. 2012, 134, 4011.
(17) (a) Saget, T.; Cramer, N. Angew. Chem., Int. Ed. 2010, 49, 8962.
(b) Ma, S.; Negishi, E.-i. J. Am. Chem. Soc. 1995, 117, 6345.
(14) (a) Wang, Y.-M.; Kuzniewski, C. N.; Rauniyar, V.; Hoong, C.;
Toste, F. D. J. Am. Chem. Soc. 2011, 133, 12972. (b) Zhang, Z.;
Widenhoefer, R. A. Org. Lett. 2008, 10, 2079. (b) Zhang, Z.; Liu, C.;
Kinder, R. E.; Han, X.; Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc.
2006, 128, 9066. (c) Bartolome, C.; Garcia-Cuadrado, D.; Ramiro, Z.;
Espinet, P. Organometallics 2010, 29, 3589. (d) Arbour, J. L.; Rzepa,
H. S.; White, A. J. P.; Hii, K. K. Chem. Commun. 2009, 7125. (e) Zhang,
Z.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 2007, 46, 283. (f) Wang,
Z. J.; Brown, C. J.; Bergman, R. G.; Raymond, K. N.; Toste, F. D.
J. Am. Chem. Soc. 2011, 133, 7358. (g) Wang, Y.; Zheng, K.; Hong, R.
J. Am. Chem. Soc. 2012, 134, 4096.
2310
Org. Lett., Vol. 14, No. 9, 2012