dominated by the triplet excited-state absorption, the triplet
excited-state quantum yield (ΦT) should also play a role. There-
fore, the key parameter that determines the RSA of ns laser
pulses is the ΦTσex/σ0 value of a molecule. The ground-state
absorption cross sections at 532 nm for these complexes are
deduced from the ε values obtained from their UV-Vis absorp-
tion using the conversion equation σ = 2303ε/NA, where NA is
the Avogadro constant. The triplet excited-state absorption cross
sections at 532 nm are estimated from the ΔOD at zero time
delay of the ns TA spectrum and the εT1–Tn at the TA band
maximum (Table 1). The results are compiled in Table 1. The
ΦTσex/σ0 values for these complexes at 532 nm follow this
trend: Pt-1 > Pt-4 > Pt-2. The stronger RSA of Pt-1 than Pt-2 is
a result of the extended π-conjugation in the acetylide ligands,
which red-shifts both the ground-state and excited-state absorp-
tion spectra. Consequently, the ground-state absorption cross
section at 532 nm increases while the triplet excited-state absorp-
tion decreases, leading to the reduced ratio of ΦTσex/σ0 and
decreased RSA in Pt-2 compared to that in Pt-1. The stronger
RSA of Pt-4 than Pt-2 is mainly attributed to the reduced σ0 at
532 nm for Pt-4, leading to a larger ratio of ΦTσex/σ0 for Pt-4
than for Pt-2. It is worth noting that the estimated σex/σ0 values
for these complexes at 532 nm are much larger than most of the
reverse saturable absorbers reported in the literature at 532 nm
(see ESI, Table S6†).10 (It should be noted that comparison of
the bulk RSA of different molecules reported in the literature
that are measured under different experimental conditions is
meaningless because different concentrations, thicknesses of
samples, different wavelengths or experimental setups will affect
the RSA results drastically. A better way to evaluate the perform-
ance of a reverse saturable absorber is to compare the intrinsic
molecular parameter σex/σ0.) Although the σex/σ0 values for
Pt-1, Pt-2 and Pt-4 are somewhat smaller than those for the Pt
complex with benzothiazolyl fluorenylacetylide ligands,4a the
values reported in this work are estimated values using different
methods from that reported previously for the Pt complex with
benzothiazolyl fluorenylacetylide ligands.4a Because the esti-
mated σex values using the method briefed in this work are
generally smaller than the σex values obtained via fitting of the
Z-scan data using a five-level model (which is the case for
obtaining the σex values for the Pt complex with benzothiazolyl
fluorenylacetylide ligands),4a the σex values and the σex/σ0 and
ΦTσex/σ0 ratios reported in this paper for Pt-1, Pt-2 and Pt-4 are
the bottom-line values for these complexes. The true values will
be reported later by conducting Z-scan measurements and fitting
the Z-scan data using a five-level model.4a Nevertheless, the
much longer lifetimes of Pt-1, Pt-2 and Pt-4 could compensate
for the somewhat smaller σex/σ0 values, leading to the observed
stronger RSA for these complexes than the Pt complex bearing
benzothiazolyl fluorenylacetylide ligands.4a From the compari-
son of the σex/σ0 values listed in Table S6†, the RSA of Pt-1,
Pt-2 and Pt-4 should be much stronger than the other reverse
saturable absorbers reported in the literature if the RSA exper-
iments are carried out under identical conditions. Therefore, they
are among the best reverse saturable absorbers for ns laser pulses
at 532 nm. Moreover, these complexes could potentially exhibit
large two-photon absorption in the near-IR region considering
the charge-transfer nature of the lowest excited state of these
complexes (this will be studied and reported in the near future).
They are thus very promising broadband nonlinear absorbing
materials as well.
In conclusion, the Pt(II) diimine complexes bearing naphthali-
mide substituted fluorenylacetylide ligands exhibit strong
1
1ILCT or mixed ILCT/1MLCT/1LLCT absorption bands in the
visible spectral region, as well as long-lived 3ILCT or
3ILCT/3MLCT/3LLCT excited states (τ = ∼20–30 μs) and broad-
band triplet TA in the visible-NIR region. Upon ns laser pulse
irradiation at 532 nm, strong RSA occurs. Thus, these Pt com-
plexes are among the most promising nonlinear absorbing
materials. Moreover, their long-lived triplet excited states make
them potential candidates for upconversion, oxygen sensing, and
photovoltaic applications.
Notes and references
1 (a) Y. Liu, Q. Li, J. Zhao and H. Guo, RSC Adv., 2012, 2, 1061;
(b) H. Sun, H. Guo, W. Wu, X. Liu and J. Zhao, Dalton Trans., 2011, 40,
7834; (c) L. Huang, L. Zeng, H. Guo, W. Wu, W. Wu, S. Ji and J. Zhao,
Eur. J. Inorg. Chem., 2011, 2011, 4527.
2 (a) M. Hissler, J. E. McGarrah, W. B. Connick, D. K. Geiger,
S. D. Cummings and R. Eisenberg, Coord. Chem. Rev., 2000, 208, 115;
(b) J. E. McGarrah, Y.-J. Kim, M. Hissler and R. Eisenberg, Inorg.
Chem., 2001, 40, 4510; (c) S. Suzuki, R. Sugimura, M. Kozaki,
K. Keyaki, K. Nozaki, N. Ikeda, K. Akiyama and K. Okada, J. Am.
Chem. Soc., 2009, 131, 10374.
3 H. Guo, S. Ji, W. Wu, W. Wu, J. Shao and J. Zhao, Analyst, 2010, 135,
2832.
4 (a) W. Sun, B. Zhang, Y. Li, T. M. Pritchett, Z. Li and J. E. Haley, Chem.
Mater., 2010, 22, 6384; (b) T. M. Pritchett, W. Sun, B. Zhang,
M. J. Ferry, Y. Li, J. E. Haley, D. M. Mackie, I. I. I. W. Shensky and
A. G. Mott, Opt. Lett., 2010, 35, 1305.
5 (a) M. Hissler, W. B. Connick, D. K. Geiger, J. E. McGarrah, D. Lipa,
R. J. Lachicotte and R. Eisenberg, Inorg. Chem., 2000, 39, 447;
(b) T. J. Wadas, R. J. Lachicotte and R. Eisenberg, Inorg. Chem., 2003,
42, 3772; (c) C. E. Whittle, J. A. Weinstein, M. W. George and
K. S. Schanze, Inorg. Chem., 2001, 40, 4053; (d) J. E. Rogers,
J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini,
D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Maka-rov,
A. Rebane, K. Y. Kim, R. Farley and K. S. Schanze, Inorg. Chem., 2007,
46, 6483.
6 I. E. Pomestchenko, C. R. Luman, M. Hissler, R. Ziessel and
F. N. Castellano, Inorg. Chem., 2003, 42, 1394.
7 Z. Li, E. Badaeva, D. Zhou, J. Bjorgaard, K. D. Glusac, S. Killina and
W. Sun, J. Phys. Chem. A, 2012, 116, 4878.
8 H. Guo, M. L. Muro-Small, S. Ji, J. Zhao and F. N. Castellano, Inorg.
Chem., 2010, 49, 6802.
9 (a) B. A. Reinhardt, L. L. Brott, S. J. Clarson, A. G. Dillard, J. C. Bhatt,
R. Kannan, L. Yuan, G. S. He and P. N. Prasad, Chem. Mater., 1998, 10,
1863; (b) K. D. Belfield, D. J. Hagan, E. W. Van Stryland, K. J. Schafer
and R. A. Negres, Org. Lett., 1999, 1, 1575; (c) M. H. V. Werts,
S. Gmouh, O. Mongin, T. Pons and M. Blanchard-Desce, J. Am. Chem.
Soc., 2004, 126, 16294; (d) P. N. Day, K. A. Nguyen and R. Pachter,
J. Phys. Chem. B, 2005, 109, 1803.
10 (a) F. Guo, W. Sun, Y. Liu and K. Schanze, Inorg. Chem., 2005, 44,
4055; (b) P. Shao, Y. Li, J. Yi, T. M. Pritchett and W. Sun, Inorg. Chem.,
2010, 49, 4507; (c) Z. Ji, Y. Li, T. M. Pritchett, N. S. Makarov,
J. E. Haley, Z. Li, M. Drobizhev, A. Rebane and W. Sun, Chem.–Eur. J.,
2011, 17, 2479; (d) B. Zhang, Y. Li, R. Liu, T. M. Pritchett,
A. Azenkeng, J. E. Haley, A. Ugrinov, Z. Li, M. R. Hoffmann and
W. Sun, Chem.–Eur. J., 2012, 18, 4593; (e) Y. Li, T. M. Pritchett,
J. Huang, M. Ke, P. Shao and W. Sun, J. Phys. Chem. A, 2008, 112,
7200; (f) T. M. Pritchett, W. Sun, F. Guo, B. Zhang, M. J. Ferry,
J. E. Rogers-Haley, W. Shensky III and A. G. Mott, Opt. Lett., 2008, 33,
1053; (g) W. Sun, Y. Li, T. M. Pritchett, Z. Ji and J. E. Haley, Nonlinear
Optics, Quantum Optics: Concepts in Modern Optics, 2010, 40, 163;
(h) Y. Song, G. Fang, Y. Wang, S. Liu and C. Li, Appl. Phys. Lett., 1999,
74, 332; (i) J. Si, M. Yang, Y. Wang, L. Zhang, C. Li, D. Wang, S. Dong
and W. Sun, Appl. Phys. Lett., 1994, 64, 3083.
This journal is © The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 12353–12357 | 12357