ORGANIC
LETTERS
2012
Vol. 14, No. 10
2610–2613
Direct and Highly Enantioselective
Iso-PictetÀSpengler Reactions with
r-Ketoamides: Access to Underexplored
Indole Core Structures
€
Heike Schonherr and James L. Leighton*
Department of Chemistry, Columbia University, New York, New York 10027,
United States
Received April 10, 2012
ABSTRACT
Direct, one-pot, operationally simple, and highly enantioselective iso-PictetÀSpengler reactions are reported. The reactions involve the
condensation of either (1H-indol-4-yl)methanamine or 2-(1H-Indol-1-yl)ethanamine with a variety of r-ketoamides, followed by the addition of a
simple and commercially available chiral silicon Lewis acid. These reactions are the first asymmetric examples of these cyclization modes and
provide access to 3,3-disubstituted-1,3,4,5-tetrahydropyrrolo[4,3,2-de]isoquinolines and 1,1-disubstituted-1,2,3,4-tetrahydropyrazino[1,2-a]-
indoles, respectively, two relatively underexplored indole-based core structure motifs in medicinal chemistry.
The indole version1 of the venerable PictetÀSpengler
reaction2 providesaccesstotetrahydro-β-carbolines, and it
is only recently that significant progress has been made
toward the development of enantioselective variants.3
Most notably, Jacobsen and co-workers have developed
a suite of asymmetric PictetÀSpengler reactions based on
the extraordinary and elegant concept of anion binding by
chiral thiourea catalysts.4 Despite these truly conceptually
pioneering advances, however, the asymmetric PictetÀ
Spengler reaction remains an at least partly, if not largely,
unsolved problem if success is defined as the ability to take
an unmodified tryptamine (directness), react it with any
aldehyde or ketone (scope) under operationally simple,
inexpensive, and otherwise practical reaction conditions
(practicality), and isolate the product in good yield and in
highly enantiomerically enriched form (generality and
applicability in complex settings). Such attributes are far
more directly correlated with widespread adoption of a
given asymmetric method than is, for example, the amount
of chiral inducer employed.5
(1) Tatsui, G. J. Pharm. Soc. Jpn. 1928, 48, 92.
(2) (a) Pictet, A.; Spengler, T. Ber. Dtsch. Chem. Ges. 1911, 44, 2030.
(b) Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797. (c) Youn, S. W.
Org. Prep. Proced. Int. 2006, 38, 505.
(3) (a) Yamada, H.; Kawate, T.; Matsumizu, M.; Nishida, A.;
Yamaguchi, K.; Nakagawa, M. J. Org. Chem. 1998, 63, 6348. (b)
Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, 128, 1086.
(c) Wanner, M. J.; van der Haas, R. N. S.; de Cuba, K. R.; van
Maarseveen, J. H.; Hiemstra, H. Angew. Chem., Int. Ed. 2007, 46,
7485. (d) Sewgobind, N. V.; Wanner, M. J.; Ingemann, S.; de Gelder,
R.; van Maarseveen, J. H.; Hiemstra, H. J. Org. Chem. 2008, 73, 6405. (e)
Duce, S.; Pesciaioli, F.; Gramigna, L.; Bernardi, L.; Mazzanti, A.; Ricci,
A.; Bartoli, G.; Bencivenni, G. Adv. Synth. Catal. 2011, 353, 860. (f)
To that end, we reported in 2009 a direct asymmetric
PictetÀSpengler reaction with unmodified tryptamines
and R-ketoamides promoted by (S,S)-1,6 a simple, versatile,
and commercially available silicon Lewis acid7 (Figure 1a).
ꢀ
Badillo, J. J.; Silva-Garcia, A.; Shupe, B. H.; Fettinger, J. C.; Franz,
(5) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010,
A. K. Tetrahedron Lett. 2011, 52, 5550.
110, 3600.
(6) Bou-Hamdan, F. R.; Leighton, J. L. Angew. Chem., Int. Ed. 2009,
48, 2403.
(4) (a) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126,
10558. (b) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N.
J. Am. Chem. Soc. 2007, 129, 13404. (c) Klausen, R. S.; Jacobsen, E. N.
Org. Lett. 2009, 11, 887.
(7) Leighton, J. L. Aldrichimica Acta 2010, 43, 3.
r
10.1021/ol300922b
Published on Web 04/27/2012
2012 American Chemical Society