and Ti(OiPr)4 in THF, which resulted in the clean elimination of
two equivalents of HOiPr and the formation of [Ti(OiPr)2(H4L2a/
b)] in good yields; no further HOiPr elimination was observed,
even at elevated temperatures.‡ In a similar manner to the imine
and amide functionalities on the secondary sphere chemistry of
these complexes, and are investigating routes to the cyclisation
of the square-planar donor set to facilitate complexation of a
range of metals.
We thank the University of Edinburgh and the UK EPSRC for
financial support, and Dr Claire Wilson for collecting the X-ray
data for [Ti(OiPr)2(H4L2b)].
1
complexes [Pd(HL1)] and [Pd(ClH2L1)], the H NMR spectra of
both [Ti(OiPr)2(H4L2a/b)] display two sets of resonances in a
2 : 1 ratio that support the coordination of two arms of the tripo-
dal ligand to the metal, with one arm remaining pendant. This
geometry is supported by the X-ray crystal structure of [Ti
(OiPr)2(H4L2b)] (Fig. 3) in which the Ti centre adopts a distorted
octahedral geometry comprising a N2O2 equatorial donor set
arising from the tripodal ligand and axial OiPr groups.‡ The two
OiPr groups are canted away from the pyrrolides subtending a
non-linear O4–Ti1–O5 angle, presumably as a result of steric
pressure from the pendant pyrrole–amide arm and the presence
of MeCN hydrogen-bonded to O4 (not shown). The presence of
the electropositive, oxophilic Ti metal centre results in preferen-
tial coordination of the amide group through its O-donor, and
allows the amide N–H to hydrogen bond to MeCN solvent of
crystallisation. In contrast to [CuCl(H2L1)], the pendant pyrrole–
amide arm in [Ti(OiPr)2(H4L2b)] does not interact with the axial
O-ligands but instead forms N–H⋯O hydrogen-bonds to a
neighbour which results in an infinite linear zig-zag motif in the
solid state.
Notes and references
‡Representative synthetic and crystal data: [Pd(HL1)] yellow solid in
62% yield (0.39 g). Analysis. Found: C, 63.81; H, 6.93; N, 12.67%
C35H46N6Pd requires C, 63.96, H, 7.05, N, 12.79%. Single crystals were
grown by cooling a saturated MeCN solution: C35H46N6Pd1, M 657.18,
ˉ
triclinic P1, a = 11.6995(6), b = 13.0619(7), c = 13.1928(7) Å, α =
115.965(5), β = 113.289(5), γ = 94.036(4)°, V 1590.89(15) Å3, 150(2)
K, Z = 2, 7757 independent reflections, R(int) 0.047, R[F2 > 2σ(F2)]
0.032, CCDC 866705.
[Pd(ClH2L1)] yellow solid in 60% yield (0.075 g). Analysis. Found:
C, 60.47; H, 6.68; N, 11.92% C35H47ClN6Pd requires C, 60.60, H, 6.83,
N, 12.12%. Single crystals were grown by slow diffusion of hexane into
a saturated CH2Cl2 solution: C36H48Cl4N6Pd, M 813.00, monoclinic
P21/c, a = 17.130(2), b = 11.0690(14), c = 20.818(3) Å, α = γ = 90, β =
108.888(14)°, V 3734.7(8) Å3, 150(2) K, Z = 4, 4544 independent
reflections, R(int) 0.057, R[F2 > 2σ(F2)] 0.042, CCDC 866706.
[CuCl(H2L1)] Green solid in 65% yield (0.37 g). Analysis. Found: C,
64.64; H, 7.32; N, 12.84% C35H47CuClN6 requires C, 64.59, H, 7.28,
N, 12.91%. Single crystals were grown by slow diffusion of Et2O into a
saturated MeCN solution: C75.25H105.75Cl2Cu2N12.5O,
M 1399.45,
We have shown that the primary and secondary spheres in
complexes of the pyrrole–imine ligand L1 and the pyrrole–amide
ligand L2 can be managed through judicious choice of metal.
For L1, square planar CuII and PdII cations favour a porphyrin-
like N4-donor set made up of two of the three arms of the poten-
tially tripodal ligand, thus leaving one arm pendant and able to
define the acid–base characteristics of the secondary sphere
environment. A similar structural motif is favoured in a Ti alkox-
ide complex of L2, and suggests that the formation of truly tripo-
dal complexes of these ligands is generally inhibited, with the
N4- or N2O2 square-planar donor environments dominant. We
are currently evaluating the impact of the pendant pyrrole imine
orthorhombic Pna21, a = 16.9395(3), b = 16.1910(3), c = 26.7675(5) Å,
α = β = γ = 90°, V 7341.5(2) Å3, 150(2) K, Z = 4, 14 997 independent
reflections, R(int) 0.041, R[F2 > 2σ(F2)] 0.046, CCDC 866707.
[Ti(OiPr)2(H4L2b)] colourless solid in 66% yield (0.13 g). Analysis.
Found: C, 56.01; H, 6.37; N, 15.18% C26H35N6O5Ti requires C, 55.72,
H, 6.47, N, 14.99%. Single crystals were grown by slowly cooling a
saturated MeCN solution: C32H45N9O5Ti, M 683.67, monoclinic P21/c,
a = 11.704(10), b = 35.30(3), c = 9.483(12) Å, α = γ = 90, β = 112.407
(12)°, V 3622(7) Å3, 160(2) K, Z = 4, 6022 independent reflections, R
(int) 0.124, R[F2 > 2σ(F2)] 0.087, CCDC 866708.
1 P. W. N. M. van Leeuwen, Supramolecular Catalysis, Wiley-VCH, 2008;
R. L. Shook and A. S. Borovik, Chem. Commun., 2008, 6095; D. Natale
and J. C. Mareque-Rivas, Chem. Commun., 2008, 425.
2 C. Finn, S. Schnittger, L. J. Yellowlees and J. B. Love, Chem. Commun.,
2012, 48, 1392; E. E. Benson, C. P. Kubiak, A. J. Sathrum and J.
M. Smieja, Chem. Soc. Rev., 2009, 38, 89; S. Fukuzumi, Chem. Lett.,
2008, 37, 808; A. D. Wilson, R. K. Shoemaker, A. Miedaner, J.
T. Muckerman, D. L. DuBois and M. R. DuBois, Proc. Natl. Acad.
Sci. U. S. A., 2007, 104, 6951; J. L. Dempsey, A. J. Esswein, D.
R. Manke, J. Rosenthal, J. D. Soper and D. G. Nocera, Inorg. Chem.,
2005, 44, 6879.
3 J. P. Collman, Acc. Chem. Res., 1977, 10, 265; J. P. Collman, N.
K. Devaraj, R. A. Decréau, Y. Yang, Y.-L. Yan, W. Ebina, T.
A. Eberspacher and C. E. D. Chidsey, Science, 2007, 315, 1565.
4 P. Even and B. Boitrel, Coord. Chem. Rev., 2006, 250, 519.
5 P. D. Harvey, C. Stern, C. P. Gros and R. Guilard, Coord. Chem. Rev.,
2007, 251, 401.
6 R. McGuire Jr, D. K. Dogutan, T. S. Teets, J. Suntivich, Y. Shao-Horn
and D. G. Nocera, Chem. Sci., 2010, 1, 411.
7 J. P. Collman, R. Boulatov, C. J. Sunderland and L. Fu, Chem. Rev.,
2004, 104, 561.
8 A. R. Naziruddin, A. Hepp, T. Pape and F. E. Hahn, Organometallics,
2011, 30, 5859; T. Kösterke, T. Pape and F. E. Hahn, Chem. Commun.,
2011, 47, 10773; T. Kösterke, T. Pape and F. E. Hahn, J. Am. Chem. Soc.,
2011, 133, 2112; F. E. Hahn, A. R. Naziruddin, A. Hepp and T. Pape,
Organometallics, 2010, 29, 5283.
Fig. 3 Solid-state structure of [Ti(OiPr)2(H4L2b)](MeCN)2 (R′ = Me).
For clarity, all hydrogen atoms, except those involved in hydrogen-
bonding interactions, are omitted (displacement ellipsoids are drawn at
50% probability). Selected bond lengths (Å) and angles (°): Ti1–O1
2.104(4); Ti1–O2 2.104(4); Ti1–N1 2.060(4); Ti1–N3 2.065(4); Ti1–O4
1.806(3); Ti1–O5 1.794(3); N2⋯N8 2.934(7); N4⋯N7 3.040(7);
O3⋯N6′ 2.793(7); O1–Ti1–O2 128.1(1); O4–Ti1–O5 150.3(2); O1–
Ti1–N1 76.1(1); O2–Ti1–N3 76.5(2); N1–Ti1–N3 79.3(1).
9 J. B. Love, Chem. Commun., 2009, 3154.
10 P. L. Arnold, G. M. Jones, S. O. Odoh, G. Schreckenbach, N. Magnani
and J. B. Love, Nat. Chem., 2012, 4, 221; P. L. Arnold, E. Hollis, F.
J. White, N. Magnani, R. Caciuffo and J. B. Love, Angew. Chem., Int.
Ed., 2011, 50, 887; P. L. Arnold, A.-F. Pecharman, E. Hollis, A. Yahia,
L. Maron, S. Parsons and J. B. Love, Nat. Chem., 2010, 2, 1056; P.
L. Arnold, D. Patel, C. Wilson and J. B. Love, Nature, 2008, 451, 315.
This journal is © The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 5785–5788 | 5787