Angewandte
Chemie
[7] Reviews: a) J. J. Song, J. T. Reeves, F. Gallou, Z. Tan, N. K. Yee,
follows analogously to the C2 metalation result observed for
the N-MOM azaindole 7.
Mꢃrour, B. Joseph, Curr. Org. Chem. 2001, 5, 471; c) F.
Popowycz, S. Routier, B. Joseph, J.-Y. Mꢃrour, Tetrahedron
In the next step, the anionic ortho-Fries rearrangement[28]
of 28 proceeded in quantitative yield to the amide 29 which,
upon methylation, gave 30, which was poised for the final
DoM event. A second LiTMP/TMSCl in situ quench process
afforded the richly functionalized 31 (for X-ray structure, see
the Supporting Information), and completed the regioselec-
tive exhaustive elaboration of the azaindole core by a ring-
walk metalation sequence.
[8] Azaindoles with N-variation in the pyridine core are frequently
exploited as indole bioisosteres: a) A. Echalier, K. Bettayeb, Y.
Ferandin, O. Lozach, M. Clꢃment, A. Valette, F. Liger, B.
Marquet, J. C. Morris, J. A. Endicott, B. Joseph, L. Meijer,
J. Med. Chem. 2008, 51, 737; b) D. P. Power, O. Lozach, L.
In summary, we have demonstrated the regioselective
peri(C4)-metalation of N-unprotected, powerful, and versa-
tile[29] azaindoles 5a,b, bearing a DMG on C3, through a new
anionic C2 shielding concept, thus resulting in the first
observation of peri-metalation of CONEt2 and SO2NEt2
DMG systems. The reaction has been shown to be both
robust and scalable.[30] The anionic shielding concept was
extended to preferred C5 over C2 metalation to provide
a general regioselective route to new azaindoles and fused
derivatives. Importantly, we demonstrated by comparison of
substrates 5a and 7 that the N-anionic shielding effect is
crucial to regioselectively lithiate the C4 position over the
intrinsically favored C2 lithiation, thus allowing the first
reported synthesis of the fully dressed azaindole 31 through
a ring-walk metalation. The broader application of the
derived synthetic chemistry may be anticipated.
[9] Matrix Scientific: 25 g = USD 59.
[10] Antitumor activity: a) Mps1 inhibitor: N. Kwiatkowski, N.
Jelluma, P. Filippakopoulos, M. Soundarajan, M. S. Manak, M.
Kwon, H. G. Choi, T. Sim, Q. L. Deveraux, S. Rottman, D.
Pellman, J. V. Shah, G. J. P. L. Kops, S. Knapp, N. S. Gray, Nat.
c) Antitussive: M. Allegretti, R. Anacardio, M. C. Cesta, R.
Curti, M. Mantovanini, G. Nano, A. Topai, G. Zampella, Org.
J. Bastian, D. Gifford-Moore, R. Harper, J. Mullaney, D. Sall, G.
[11] 7-Azaindoles are also useful in material science and coordina-
[12] Pyrrole heteroannulation approaches are based on classical
indole synthetic strategies and proceed, as may be expected as
a result of the electron-deficient pyridine ring, in low yield.
These approaches also provide limited substitution patterns and
functional group tolerance: see Refs. [7a–c].
Received: November 14, 2011
Published online: February 1, 2012
Keywords: heterocycles · metalation · regioselectivity ·
.
[13] a) Direct pyridine ring chlorination of 7-azaindole N-oxide to
give 4- and 6-chloro derivatives (Reissert – Henze type reaction):
5, 5023; b) Transition metal catalyzed synthesis of substituted
11, 1357; c) Palladium-catalyzed C4 amination: J. L. Henderson,
d) Suzuki – Miyaura and Sonogashira reactions at C-6 and C-4:
M. Allegritti, A. Arcadi, F. Marinelli, L. Nicolini, Synlett 2001,
609; e) C-O and C-N coupling: M. Thutewohl, H. Schirok, S.
Nucleophilic Substitution at C-4: S. Figueroa-Pꢃrez, S. Bennabi,
H. Schirok, M. Tuthewohl, Tetrahedron Lett. 2006, 47, 2069.
[15] a) N-PhSO2: E. Desarbre, S. Coudret, C. Meheust, J.-Y. Mꢃrour,
Kulagowski, P. D. Leeson, M. P. Ridgill, F. Emms, S. B. Freed-
c) N-Me, -MOM, -CH2N(Me)2: M. Hogan, J. Cotter, J. Claffey,
structure elucidation · synthetic methods
[1] While this historic peri-nomenclature pertains usually to 1,8-
disubstituted naphthalenes (P. Kilian, F. R. Knight, J. D. Woolins,
Chem. Eur. J. 2011, 12, 2302), the analogous arrangement and
similar distances, 1,8-H-H naphthalenes = 2.44 ꢂ; 3,4-H-H 7-
azaindole = 3.00 ꢂ (P. Dufour, Y. Dartiguenave, M. Dartigue-
here.
[2] a) E. J.-G. Anctil, V. Snieckus in Metal-Catalyzed Cross-Cou-
pling Reactions, 2nd ed., Vol. 2 (Eds.: A. de Meijere, F. Die-
derich), Wiley-VCH, Weinheim, 2004, pp. 761 – 813; b) E. J.-G.
[3] M. C. Whisler, S. MacNeil, V. Snieckus, P. Beak, Angew. Chem.
[4] Reviews: a) T. Macklin, V. Snieckus in Handbook of CH
Transformations (Ed.: G. Dyker), WileyVCH, New York, 2005,
pp. 106119; b) C. G. Hartung, V. Snieckus in Modern Arene
Chemistry (Ed.: D. Astruc), WileyVCH, New York, 2002,
pp. 330 – 367; For recent work: c) T. E. Hurst, T. K. Macklin,
M. Becker, E. Hartmann, W. Kꢀgel, J.-C. Parisienne-La-Salle,
A. S. Batsanov, T. B. Marder, V. Snieckus, Chem. Eur. J. 2010, 16,
8155; d) C. Schneider, E. Broda, V. Snieckus, Org. Lett. 2011, 13,
3588.
[16] a) C-5 DoM of 4-F or 4-Cl: A. LꢁHeureux, C. Thibault, R. Ruel,
Tetrahedron Lett. 2004, 45, 2317; b) C-4 DoM of azagramine: P.
Ibrahim, R. Artis, R. Bremer, G. Habets, R. Zuckerman, US
2007/066641, 2005 [Chem. Abstr. 2007, 146, 358822].
[17] For a similar result: P. E. Eaton, H. Higuchi, R. Millikan,
[5] The peri-metalation of 1-naphthamide and related derivatives
has not been as yet achieved: a) J. Clayden, C. S. Frampton, C.
references therein; b) R. J. Mills, Sc. Ph.D. thesis, University of
Waterloo, ON, Canada, 1984; c) J.-A. Morin, MSc Thesis,
Queenꢁs University, Kingston ON, Canada, 2007.
[19] Experiments with less than 2.5 equivalents of sBuLi gave lower
yields of product 6a.
[6] E. Koenigs, A. Fulde, Ber. Dtsch. Chem. Ges. 1927, 60, 2106.
Angew. Chem. Int. Ed. 2012, 51, 2722 –2726
ꢀ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2725