Journal of the American Chemical Society
Page 4 of 5
I.; Grupe, S.; Gärtner, D.; Corpet, M.; Gosmini, C.; Jacobi
(17) (a) Tobisu, M.; Chatani, N. Acc. Chem. Res. 2015, 48,
1
2
3
4
5
6
7
8
von Wangelin, A. Chem. Eur. J. 2014, 20, 6828.
(2) (a) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature
2014, 509, 299. (b) Diederich, F.; Meijere, A., Eds. Metal-
Catalyzed Cross-Coupling Reactions; WileyꢀVCH: Weinꢀ
heim, 2004.
(3) For selected reviews dealing with unactivated alkyl halides,
see: (a) Kambe, N.; Iwasaki, T.; Terao, J. Chem. Soc. Rev.
2011, 40, 4937. (b) Jana, R.; Pathak, T. P.; Sigman, M. S.
Chem. Rev. 2011, 111, 1417.
1717. (b) Cornella, J.; Zarate, C.; Martin, R. Chem. Soc.
Rev. 2014, 43, 8081. (c) Yamaguchi, J.; Muto, K.; Itami, K.
Eur. J. Org. Chem. 2013, 19. (d) Rosen, B. M.; Quasdorf,
K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A. –M.; Garg,
N. K.; Perce, V. Chem. Rev. 2011, 111, 1346. (e) Yu, D. –
G.; Li, B. –J.; Shi, Z. –J. Acc. Chem. Res. 2010, 43, 1486.
(18) C(sp2)–O electrophiles have shown to be suited for catalytic
reductive carboxylation techniques: Correa, A.; León, T.;
Martin, R. J. Am. Chem. Soc. 2014, 136, 1062.
9
(4) For a single example of a reductive homodimerization of an
unactivated alkyl chlorides: Prinsell, M.; Everson, D.; Weix,
D. J. Chem. Commun. 2010, 46, 5743. For a recent intramo-
lecular ringꢀcontraction: Tollefson, E. J.; Erickson, E. W.;
Jarvo, E. R. J. Am. Chem. Soc. 2015, 137, 9760.
(5) Selected coupling of unactivated alkyl chlorides with nucleꢀ
ophile/electrophile regimes: (a) Atack, T. C.; Cook, S. P. J.
Am. Chem. Soc. 2016, 138, 6139. (b) Lu, Z.; Fu, G. C. An-
gew. Chem., Int. Ed. 2010, 49, 6676, and references therein.
(6) For selected reviews: (a) Renzo, R.; Bellina, F.; Lessi, M.
Tetrahedron 2011, 67, 6969. (b) Fairlamb, I. J. S. Chem.
Soc. Rev. 2007, 36, 1036.
(7) (a) Zhang, L.; Hou, Z. Chem. Sci. 2013, 4, 3395; (b) Tsuji,
Y.; Fujihara, T. Chem. Commun. 2012, 48, 9956. (c)
Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.;
Kuhn, F. E. Angew. Chem., Int. Ed. 2011, 50, 8510. (d)
Huang, K.; Sun, C. –L.; Shi, Z. –J. Chem. Soc. Rev. 2011,
40, 2435. (e) Martin, R.; Kleij, A. W. ChemSusChem 2011,
4, 1259.
(8) (a) Patai, S. The Chemistry of Acid Derivatives; Wiley: New
York, 1992. (b) Goossen, L. J.; Rodríguez, N.; Goosen, K.
Angew. Chem., Int. Ed. 2008, 47, 3100. (c) Maag, H. Pro-
drugs of Carboxylic Acids; Springer: New York, 2007.
(9) Osakada, K.; Sato, R.; Yamamoto, T. Organometallics
1994, 13, 4645.
(10) Selected references: (a) Moragas, T.; Gaydou, M.; Martin,
R. Angew. Chem., Int. Ed. 2016, 55, 5053. (b) Wang, X.;
Nakajima, M.; Martin, R. J. Am. Chem. Soc. 2015, 137,
8924. (c) Wang, X.; Liu, Y.; Martin, R. J. Am. Chem. Soc.
2015, 137, 6476. (d) Moragas, T.; Cornella, J.; Martin, R. J.
Am. Chem. Soc. 2014, 136, 17702. (e) Liu, Y.; Cornella, J.;
Martin, R. J. Am. Chem. Soc. 2014, 136, 11212.
(11) Selected references: (a) Rebih, F.; Andreini, M.; Moncomꢀ
ble, A.; HarrisonꢀMarchand, A.; Maddaluno, J.; Durandetti,
M. Chem. Eur. J. 2016, 22, 3758. (b) Nogi, K.; Fujihara, T.;
Terao, J.; Tsuji, Y. J. Org. Chem. 2015, 80, 11618. (c) Mita,
T.; Higuchi, Y.; Sato, Y. Chem. Eur. J. 2015, 21, 16391. (d)
Nogi, K.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem. Commun.
2014, 50, 13052. (e) TranꢀVu, H.; Daugulis, O. ACS Catal.
2013, 3, 2417. (f) Fujihara, T.; Nogi, K.; Xu, T.; Terao, J.;
Tsuji, Y. J. Am. Chem. Soc. 2012, 134, 9106.
(19) Nonꢀcaged tertiary alkyl chlorides provided traces of carꢀ
boxylation products.
(20) (a) Wang, X.; Wang, S.; Xue, W.; Gong, H. J. Am. Chem.
Soc. 2015, 137, 11562. (b) Zhao, C.; Jia, X.; Wang, X.;
Gong, H. J. Am. Chem. Soc. 2014, 136, 17645.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(21) The anti-motion is tentatively ascribed to the intermediacy
of radical intermediates. See ref. 10c.
(22) For selected antiꢀcarbometalation techniques of organomeꢀ
tallic species, see: (a) Fressigne, C.; Girard, A. –L.; Duranꢀ
detti, M.; Maddaluno, J. Angew. Chem. Int. Ed. 2008, 47,
891. (b) Simaan, S.; Marek, I. Org. Lett. 2007, 9, 2569, and
references therein.
(23) Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem. Soc.
2010, 132, 14073.
(24) In line with this notion, significant inhibition was observed
with radical scavengers such as TEMPO or BHT. The presꢀ
ence of radical species gains credence by observing 5ꢀexoꢀ
trig cyclization at different Ni/L4 loadings when employing
6ꢀchloroꢀ1ꢀhexene as substrate, suggesting that a radicalꢀ
escape rebound mechanism might be occurring.
(25) For Ni(I) species generated upon SET, see refs. 10aꢀe, 11f
and the following references: a) Laskowski, C. A.; Bungum,
D. J.; Baldwin, S. M.; Del Ciello, S. A.; Iluc, V. M.; Hillꢀ
house, G. L. J. Am. Chem. Soc. 2013, 135, 18272; b)
Breitenfeld, J.; Ruiz, J.; Wodrich, M. D.; Hu, X. J. Am.
Chem. Soc. 2013, 135, 12004; c) Biswas, S.; Weix, D. J. J.
Am. Chem. Soc. 2013, 135, 16192, and references therein.
(26) Importantly, a stoichiometric reaction of 1a with 11 in the
absence of Mn revealed that CO2 insertion into the C(sp3)–
Ni bond occurred. This observation is noteworthy, as all
previous carboxylations of unactivated alkyl electrophiles
required the presence of Mn, even with stoichiometric
amounts of Ni complexes (refs. 10c and 10e), arguably indiꢀ
cating that a different mechanism takes place with alkyl
chloride counterparts. See ref. 12
(27) At present, direct CO2 insertion into the C(sp3)–Ni(II)Cl
bond or in situ formation of alkyl–Ni(I) species via SET
mediated by Mn cannot be excluded.
(28) For selected comproportionation events en route to Ni(I)
species, see: a) Cornella, J.; GomezꢀBengoa, E.; Martin, R.
J. Am. Chem. Soc. 2013, 135, 1997. b) Velian, A.; Lin, S.;
Miller, A. J. M.; Day, M. W.; Agapie, T. J. Am. Chem. Soc.
2010, 132, 6296. c) Phapale, V. B.; Bunuel, E.; Garcíaꢀ
Iglesias, M.; Cardenas, D. J. Angew. Chem., Int. Ed. 2007,
46, 8790. d) Jones, G. D.; Martin, J. L.; McFarland, C.; Alꢀ
len, O. R.; Hall, R. E.; Haley, A. D.; Brandon, R. J.;
Konovalova, T.; Desrochers, P. J.; Pulay, P.; Vicic, D. A. J.
Am. Chem. Soc. 2006, 128, 13175.
(12) See Supporting Information for details.
(13) Traces of βꢀhydride elimination were observed in the crude
mixtures under our optimized reaction conditions.
(14) Under the limits of detection, no alkyl bromide was detected
through the course of the reaction of 1a with TBAB by
HPLCꢀmonitoring in the absence or presence of CO2.
(15) Ammonium halides have been proposed to speed up elecꢀ
tronꢀtransfer processes from Mn to the metal center: (a)
Iyoda, M.; Otsuka, H.; Sato, K.; Nisato, N.; Oda, M. Bull.
Chem. Soc. Jpn. 1990, 63, 80, and refs. 10d and 11f.
(16) The use of Zn as reductant with either 1a or 1w resulted in a
significant erosion in yield (68% & 30%, respectively).
(29) Recently, Ni(I) species have shown to rapidly react with
CO2: Menges, F. S.; Craig, S. M.; Tötsch, N.; Bloomfield,
A.; Ghosh, S.; Krüger, H. –J.; Johnson, M. A. Angew.
Chem., Int. Ed. 2016, 55, 1282.
(30) See ref. 12 for a proposed mechanistic rationale.
ACS Paragon Plus Environment