acid promoted FriedelꢀCrafts type reactions of arenes
themselves with propargylic alcohol derivatives appear to
bea good alternative, theyaregenerallylimitedtoelectron-
rich aromatics.7 Thus, further developments of more effi-
cient and rapid access to the arylallenes are quite appealing.
Meanwhile, recent advances in the metal-mediated
CꢀH functionalization can provide a powerful protocol
for the decoration of aromatics to make arylꢀaryl, arylꢀ
alkenyl, and arylꢀalkyl CꢀC bonds directly.8 Very
recently, our group9 and others10 have succeeded in the
copper- and palladium-catalyzed direct allylation of
electron-deficient aromatics, polyfluoroarenes,11 with allyllic
electrophiles. In the course of the above study, we envis-
aged that the allylation methodology could be extended to
the direct propargylation. Herein, we report a copper-
catalyzed direct allenylation of polyfluoroarenes with pro-
pargyl phosphates. The copper catalysis allows for a
straightforward access to the (polyfluoroaryl)allenes of
potentially useful building blocks for the synthesis of
fluorinated functional molecules.12
The formation of 3aa0 would follow from a base-mediated
isomerization of the initially formed R-substituted alkyne
(vide infra). The choice of leaving group was critical: the
corresponding propargyl acetate or carbonate gave neither
3aa nor 3aa0.13 Tetrafluorobenzenes that bear electron-
donating methyl and methoxy groups showed somewhat
lower reactivity and γ/R selectivity (entries 2 and 3). On the
other hand, the introduction of trifluoromethyl substitu-
tion of electron-withdrawing nature furnished the corre-
sponding allene with higher γ-selectivity (entry 4). A
pyridine analogue 1e could be employed without any
difficulties (entry 5). In the case of 1,2,4,5-tetrafluoroben-
zene (1f) that possesses two equivalent reactive CꢀH
bonds, the monoallenylation selectively occurred, albeit
with moderate efficiency and regioselectivity (entry 6). The
coupling with other fluoroarenes having less than four
fluorine atoms completely failed (data not shown), indi-
cating that the step of CꢀH bond cleavage highly depends
on the acidity of CꢀH.14
On the basis of our previous work,9 we initially selected
pentafluorobenzene (1a) and propargyl phosphate 2a as
model substrates and investigated various reaction param-
eters such as copper salt, ligand, base, and solvent.
Pleasingly, a combination of CuCl/phen catalyst (phen =
1,10-phenanthroline) and LiO-t-Bu, a similar catalyst
system to which has been developed by Daugulis for the
direct arylation of polyfluoroarenes,11b was observed to be
effective for the coupling of 1a with 2a in 1,4-dioxane even
atroom temperaturetoafforda mixtureofthecorrespond-
ing γ- and R-substituted allenes (3aa and 3aa0) in a ratio
of 92:8 with a good combined yield (Table 1, entry 1).
Table 1. Copper-Catalyzed Direct Coupling of Polyfluoroar-
enes 1 with Propargyl Phosphate 2a for the Synthesis of
(Polyfluoroaryl)allenesa
(9) Yao, T.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed.
2011, 50, 2990.
(10) (a) Fan, S.; Chen, F.; Zhang, X. Angew. Chem., Int. Ed. 2011, 50,
5918. (b) Makida, Y.; Ohmiya, H.; Sawamura, M. Angew. Chem., Int.
Ed. 2012, 51, 4122.
entry
X 1
3 þ 30, yield (%)b
3/30 (γ/R)c
1
X = CF 1a
3aa þ 3aa0, 78
3ba þ 3ba0, 43
3ca þ 3ca0, 51
3da þ 3da0, 59
3ea þ 3ea0, 62
3fa þ 3fa0, 45
92:8
(11) Metal-catalyzed CꢀH functionalization of polyfluoroarenes:
Arylation: (a) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K.
J. Am. Chem. Soc. 2006, 128, 8754. (b) Do, H.-Q.; Daugulis, O. J. Am.
Chem. Soc. 2008, 130, 1128. (c) He, C.-Y.; Fan, S.; Zhang, X. J. Am.
Chem. Soc. 2010, 132, 12850. (d) Wei, Y.; Su, W. J. Am. Chem. Soc. 2010,
132, 16377. Alkenylation and alkylation: (e) Nakao, Y.; Kashihara, N.;
Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 16170.
(f) Zhang, X.; Fan, S.; He, C.-Y.; Wan, X.; Min, Q.-Q.; Yang, J.; Jiang,
Z.-X. J. Am. Chem. Soc. 2010, 132, 4506. (g) Sun, Z.-M.; Zhang, J.;
Manan, R. S.; Zhao, P. J. Am. Chem. Soc. 2010, 132, 6935. Benzylation:
(h) Fan, S.; He, C.-Y.; Zhang, X. Chem. Commun. 2010, 46, 4926.
Alkynylation: (i) Wei, Y.; Zhao, H.; Kan, J.; Su, W.; Hong, M. J. Am.
Chem. Soc. 2010, 132, 2522. (j) Matsuyama, N.; Kitahara, M.; Hirano,
K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12, 2358. Carboxylation:
(k) Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858.
Stannylation: (l) Doster, M. E.; Hatnean, J. A.; Jeftic, T.; Modi, S.;
Johnson, S. A. J. Am. Chem. Soc. 2010, 132, 11923. Amination:
(m) Wang, Q.; Schreiber, S. L. Org. Lett. 2009, 11, 5178. (n) Zhao, H.;
Wang, M.; Su, W.; Hong, M. Adv. Synth. Catal. 2010, 352, 1301.
(o) Miyasaka, M.; Hirano, K.; Satoh, T.; Kowalczyk, R.; Bolm, C.;
Miura, M. Org. Lett. 2011, 13, 359. (p) Matsuda, N.; Hirano, K.; Satoh,
T.; Miura, M. Org. Lett. 2011, 13, 2860. Hydroxylation: (q) Liu, Q.; Wu,
P.; Yang, Y.; Zeng, Z.; Liu, J.; Yi, H.; Lei, A. Angew. Chem., Int. Ed.
201210.1002/anie.201200750.
2d
3d
4
X = CMe 1b
X = COMe 1c
X = CCF3 1d
X = N 1e
70:30
75:25
98:2
5
6d
99:1
X = CH 1f
80:20
a Reaction conditions: CuCl (0.050 mmol), phen (0.050 mmol), LiO-
t-Bu (1.50 mmol), 1 (0.50 mmol), 2a (1.0 mmol), 1,4-dioxane (3.0 mL), rt,
4 h, N2. b Yield of isolated product as a mixture of 3 and 30. c Determined
by 1H NMR or GC. d With 30 mol % of CuCl/phen and 1.5 mmol of 2a
at 80 °C.
We next evaluated the scope of propargyl phosphates
with pentafluorobenzene (1a) (Table 2). The copper catal-
ysis accommodated various aromatic substituents at the R-
position in the propargylic phosphate: chloro-, methyl-,
and methoxyphenyl groups were equally tolerated (entries
1ꢀ3). A polyfluoroarene/thiophene-conjugated allene was
also readily available (entry 4). At the alkyne terminus,
smaller methyl and functional primary alkyl groups
(12) (a) Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew. Chem.,
€
Int. Ed. 2003, 42, 1210. (b) Muller, K.; Faeh, C.; Diederich, F. Science
2007, 317, 1881. (c) Hird, M. Chem. Soc. Rev. 2007, 36, 2070. (d) Purser,
S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37,
320. (e) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.
(f) Kenwright, A. M.; Sandford, G.; Tadeusiak, A. J.; Yufit, D. S.;
Howard, J. A. K.; Kilickiran, P.; Nelles, G. Tetrahedron 2010, 66, 9819.
(13) See the Supporting Information for details.
(14) For pKa values of representative fluoroarenes, see: Shen, K.; Fu,
Y.; Li, J.-N.; Liu, L.; Guo, Q.-X. Tetrahedron 2007, 63, 1568.
Org. Lett., Vol. 14, No. 10, 2012
2587