2570
A. K. Ghosh, X. Cheng / Tetrahedron Letters 53 (2012) 2568–2570
Table 2
access to a variety of functionalized 4-methylenetetrahydropyrans
in very good yield and excellent diastereoselectivity.
Substrate scope of oxidative cyclizationa
Entry
Product
Time (h)
16
Yield (%)
75
Acknowledgment
MeO
O
Financial support by the National Institutes of Health is grate-
fully acknowledged.
1
5b
Supplementary data
O
O
Supplementary data associated with this article can be found,
2
3
0.5
61b
5c
MeO
References and notes
O
14
81
5d
1. (a) Tanaka, J.; Higa, T. Tetrahedron Lett. 1996, 37, 5535–5538; (b) Field, J. J.;
Singh, A. J.; Kanakkanthara, A.; Halfihi, T.; Northcote, P. T.; Miller, J. H. J. Med.
Chem. 2009, 52, 7328–7332.
2. Oku, N.; Takada, K.; Fuller, R. W.; Wilson, J. A.; Peach, M. L.; Pannell, L. K.;
McMahon, J. B.; Gustafson, K. R. J. Am. Chem. Soc. 2010, 132, 10278–10285.
3. (a) Searle, P. A.; Molinski, T. F. J. Am. Chem. Soc. 1995, 117, 8126–8131; (b)
Molinski, T. F. Tetrahedron Lett. 1996, 37, 7879–7880.
4. (a) Smith, A. B., III; Verhoest, P. R.; Minibiole, K. P.; Lim, J. J. Org. Lett. 1999, 1,
909–912; (b) Smith, A. B., III; Safonov, I. G.; Corbett, R. M. J. Am. Chem. Soc. 2001,
123, 12426–12427.
5. Louis, I.; Hungerford, N. L.; Humphries, E. J.; McLeod, M. D. Org. Lett. 2006, 8,
1117–1120.
OBn
O
4
5
16
20
79
73
5e
OH
O
O
O
O
6. Ding, F.; Jennings, M. P. Org. Lett. 2005, 7, 2321–2324.
5f
7. Zurwerra, D.; Gertsch, J.; Altmann, K.-H. Org. Lett. 2010, 12, 2302–2305.
8. Kopecky, D. J.; Rychnovsky, S. D. J. Am. Chem. Soc. 2001, 123, 8420–8421.
9. (a) Marko, I. E.; Bayston, D. J. Tetrahedron Lett. 1993, 34, 6595–6598; (b) Marko,
I. E.; Plancher, J.-M. Tetrahedron Lett. 1999, 40, 5259–5262; (c) Leroy, B.; Marko,
I. E. Tetrahedron Lett. 2001, 42, 8685–8688.
10. Keck, G. E.; Covel, J. A.; Schiff, T.; Yu, T. Org. Lett. 2002, 4, 1189–1192.
11. Aubele, D. L.; Wan, S.; Floreancig, P. E. Angew. Chem. Int, Ed. 2005, 44, 3485–
3488.
6
7
8
12
16
20
79
82
79
5g
5h
12. Ghosh, A. K.; Cheng, X. Org. Lett. 2011, 13, 4108–4111.
13. (a) Tu, W.; Liu, L.; Floreancig, P. E. Angew. Chem., Int. Ed. 2008, 47, 4184–4187;
(b) Tu, W.; Floreancig, P. E. Angew. Chem., Int. Ed. 2009, 48, 4567–4571; (c) Liu,
L.; Floreancig, P. E. Org. Lett. 2010, 12, 4686–4689.
14. Yu, B.; Jiang, T.; Li, J.; Su, Y.; Pan, X.; She, X. Org. Lett. 2009, 11, 3442–3445.
15. (a) Noyori, R.; Ikeda, T.; Ohkuma, T.; Widhalm, M.; Kitamura, M.; Takaya, H.;
Akutagawa, S.; Sayo, N.; Saito, T.; Taketomi, T.; Kumobayashi, H. J. Am. Chem.
Soc. 1989, 111, 9134–9135; (b) Claffey, M. M.; Hayes, C. J.; Heathcock, C. H. J.
Org. Chem. 1999, 64, 8267–8274.
16. Zhang, W.; Carter, R. G. Org. Lett. 2005, 7, 4209–4212.
17. Cosner, C. C.; Cabrera, P. J.; Byrd, K. M.; Thomas, A. M.; Helquist, P. Org. Lett.
2011, 13, 2071–2073.
18. Zimmerman, H. E.; Traxler, M. D. J. Am. Chem. Soc. 1957, 79, 1920–1923.
19. All new compounds gave satisfactory spectroscopic and analytical results (for
more details, please see Supplementary data).
Cl
5i
5j
OMe
Representative example: 4-Methylenetetrahydropyran 3: To a suspension of
DDQ (147 mg, 20 mol %), PPTS (1.63 g, 6.48 mmol), CAN (3.51 g, 6.48 mmol),
O
O
9
10
11
16
10
3
73
and 4 Å MS (3.6 g) in MeCN (120 mL) was added
3.24 mmol). The suspension was stirred at À38 °C for 16 h and quenched with
Et3N (1 mL). The mixture was filtered through silica gel column with
a solution of 2 (1.8 g,
a
hexanes/ethyl acetate (v/v = 95:5) as the eluent. The concentrated product was
purified by silica gel chromatography with hexanes/ethyl acetate (v/v = 95:5)
as eluent to give 4-methylenetetrahydropyran 3 as an oil (1.17 g, 71%). The
analysis data comply with the reported value.12
79
4-Methylenetetrahydropyran 5a: To a suspension of 4a (33 mg, 0.1 mmol) and
4 Å MS (100 mg) in MeCN (4 mL) was added DDQ (4.5 mg, 20 mol %), PPTS
(50.4 mg, 0.2 mmol) and CAN (110 mg, 0.2 mmol) at À38 °C. Then the mixture
was stirred at À38 °C until TLC showed full conversion. Et3N (0.2 mL) was
added. The mixture was filtered through a short silica gel pad with hexanes/
ethyl acetate (v/v = 97:3) as eluent to give crude product that was purified by
silica gel chromatography with hexanes/ethyl ether = 97:3 as eluent to give 5a
as colorless oil (17.9 mg, 70%).
5k
O
*
63b
Me
(dr =4.7:1)
5l
1H NMR (400 MHz, CDCl3) d 7.40–7.21 (m, 5H), 6.62 (d, J = 16 Hz, 1H), 6.26 (dd,
J = 5.9, 16.0 Hz, 1H), 4.77 (s, 2H), 3.97–3.93 (m, 1H), 3.46–3.40 (m, 1H), 2.35 (d,
J = 13.2 Hz, 1H), 2.23 (d, J = 13.2 Hz, 1H), 2.15 (t, J = 13.2 Hz, 1H), 1.97 (t,
J = 12.7 Hz, 1H), 1.91–1.83 (m, 1H), 1.64–1.57 (m, 1H), 1.33–1.26 (m, 1H), 0.93
(d, J = 6.6 Hz, 3H), 0.92 (d, J = 6.6 Hz, 3H).
a
DDQ (20 mol %), CAN (2 equiv), PPTS (2 equiv), 4 Å MS, MeCN, À38 °C.
DDQ (1.5 equiv), PPTS (1.5 equiv), 4 Å MS, MeCN, À38 °C.
b
13C NMR (100 MHz, CDCl3) d 144.5, 136.8, 130.1, 128.4, 127.4, 126.4, 108.6,
78.6, 45.3, 41.0, 40.9, 24.3, 23.0, 22.5.
In summary, we have developed a useful oxidative protocol for
a Sakurai-type cyclization using a catalytic amount of DDQ and
2 equiv of CAN and PPTS as a promoter. The protocol provides
IR (thin film, cmÀ1) 2954, 1732, 1652, 1500, 1315, 1133, 1079, 965, 890, 745,
692. Rf = 0.35, hexanes/ethyl ether = 98:2 UV. MS (EI) m/z 256 (M+).