Journal of the American Chemical Society
Communication
ACKNOWLEDGMENTS
■
This work was supported by funding from the French Ministry
of Higher Education and Research (MESR). We are grateful to
L. Nauton and Dr. V. Thery for technical assistance and
contributive discussions about molecular modeling.
REFERENCES
■
(1) Simon, R. J.; Kania, R. S.; Zuckermann, R. N.; Huebner, V. D.;
Jewell, D. A.; Banville, S.; Ng, S.; Wang, L.; Rosenberg, S.; Spellmeyer,
D. C.; Tan, R.; Frankel, A. D.; Santi, D. V.; Cohen, F. E.; Bartlett, P. A.
Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 9367.
Figure 5. Newman projection of the most populated conformation of
7 in CDCl3 as deduced by NOESY. Strong and medium NOEs (solid
and dashed blue arrows, respectively), the n → π*Ar interaction (red
arrow), and the intramolecular H-bond (red dashed line) are shown.
(2) Zuckermann, R. N. Biopolymers 2011, 96, 545.
(3) (a) Patch, J. A.; Kirshenbaum, K.; Seurynck, S. L.; Zuckermann,
R. N.; Barron, A. E. Versatile Oligo(N-Substituted) Glycines: The Many
Roles of Peptoids in Drug Discovery; Wiley-VCH: Weinheim, Germany,
2004; pp 1−31. (b) Yoo, B.; Kirshenbaum, K. Curr. Opin. Chem .Biol.
2008, 12, 714. (c) Zuckermann, R. N.; Kodadek, T. Curr. Opin. Mol.
Ther. 2009, 11, 299. (d) Fowler, S. A.; Blackwell, H. E. Org. Biomol.
Chem. 2009, 7, 1508.
(4) Zuckermann, R. N.; Kerr, J. M.; Kent, S. B. H.; Moos, W. H. J.
Am. Chem. Soc. 1992, 114, 10646.
(5) Culf, A. S.; Ouellette, R. J. Molecules 2010, 15, 5282.
(6) Miller, S. M.; Simon, R. J.; Ng, S.; Zuckermann, R. N.; Kerr, J. M.;
Moos, W. H. Bioorg. Med. Chem. Lett. 1994, 4, 2657.
(7) Kwon, Y. U.; Kodadek, T. J. Am. Chem. Soc. 2007, 129, 1508.
(8) (a) Shah, N. H.; Butterfoss, G. L.; Nguyen, K.; Yoo, B.; Bonneau,
R.; Rabenstein, D. L.; Kirshenbaum, K. J. Am. Chem. Soc. 2008, 130,
16622. (b) Stringer, J. R.; Crapster, J. A.; Guzei, I. A.; Blackwell, H. E.
J. Org. Chem. 2010, 75, 6068. (c) Paul, B.; Butterfoss, G. L.; Boswell,
M. G.; Renfrew, P. D.; Yeung, F. G.; Shah, N. H.; Wolf, C.; Bonneau,
R.; Kirshenbaum, K. J. Am. Chem. Soc. 2011, 133, 10910.
(9) Armand, P.; Kirshenbaum, K.; Falicov, A.; Dunbrack, R. L., Jr.;
Dill, K. A.; Zuckermann, R. N.; Cohen, F. E. Folding Des. 1997, 2, 369.
(10) Wu, C. W.; Kirshenbaum, K.; Sanborn, T. J.; Patch, J. A.; Huang,
K.; Dill, K. A.; Zuckermann, R. N.; Barron, A. E. J. Am. Chem. Soc.
2003, 125, 13525.
(11) Gorske, B. C.; Bastian, B. L.; Geske, G. D.; Blackwell, H. E. J.
Am. Chem. Soc. 2007, 129, 8928.
(12) Gorske, B. C.; Stringer, J. R.; Bastian, B. L.; Fowler, S. A.;
Blackwell, H. E. J. Am. Chem. Soc. 2009, 131, 16555.
(13) Stringer, J. R.; Crapster, J. A.; Guzei, I. A.; Blackwell, H. E. J. Am.
Chem. Soc. 2011, 133, 15559.
necessary for an n → π*Ar interaction are met. In CD3CN, δH8
= 8.57 ppm was observed, suggesting from the relevant
literature27 the absence of an intramolecular H-bond. Never-
theless, the same NOEs were observed in CD3CN and CDCl3,
indicating again the spatial proximity of the triazolium and
acetamide groups, enabling a possible n → π*Ar delocalization.
The n → π*Ar delocalization and intramolecular H-bond may
act cooperatively. The H-bond not only would restrict the
conformational freedom (ϕ, ψ) but also may assist the carbonyl
(acetamide) and triazolium ring to adopt the proper orientation
to maximize the n → π*Ar delocalization. This cooperative
effect would explain why the trans rotamers are completely
suppressed in CDCl3 regardless of the side-chain type (N-Cα-
branched or unsubstituted at N-Cα).
In conclusion, we have proposed a new type of peptoid side
chain containing a triazolium moiety capable of controlling the
amide isomerism in α- and β-peptoid model systems while
maintaining the potential for side-chain diversity. This type of
side chain should facilitate the understanding of how β-peptoids
fold. To our knowledge, the triazolium motif represents the
best cis-amide control conceived to date both in aprotic and
protic solvents. We have shown that its ability to promote the
cis-amide geometry is not steric in nature. The conformation
found in CDCl3 and CD3CN is consistent with an attractive
interaction arising from a backbone−side-chain n → π*Ar
electronic delocalization. These results are supported by DFT
and NBO analysis. It is obvious that other types of noncovalent
interactions (e.g., electrostatic dipole−dipole or charge−charge
interactions) may influence Kcis/trans. In protic solvents,
particularly in water, solvation of the triazolium H-bonding
motif certainly accounts for the strong decrease in Kcis/trans. This
work has also shown for the first time the remarkable effect of
the nitrile group in stabilizing the cis-amide conformation in
peptoids. Work on syntheses and conformational studies of
peptoid oligomers with various sequence patterns of triazolium
side chains are underway.
(14) Wetzler, M.; Barron, A. E. Biopolymers 2011, 96, 556.
(15) Holub, J. M.; Kirshenbaum, K. Chem. Soc. Rev. 2010, 39, 1325.
(16) The N-Cα carbon is shown in Figure 2.
(17) Maisonial, A.; Serafin, P.; Traïkia, M.; Debiton, E.; Thery, V.;
́
Aitken, D. J.; Lemoine, P.; Viossat, B.; Gautier, A. Eur. J. Inorg. Chem.
2008, 298.
(18) Hanelt, S.; Liebscher, J. Synlett 2008, 1058.
(19) (a) Hamper, B. C.; Kolodziej, S. A.; Scates, A. M.; Smith, R. G.;
Cortez, E. J. Org. Chem. 1998, 63, 708. (b) Olsen, C. A. Biopolymers
2011, 96, 561. (c) Hjelmgaard, T.; Faure, S.; Caumes, C.; De Santis,
E.; Edwards, A. A.; Taillefumier, C. Org. Lett. 2009, 11, 4100.
(20) For the 4mpy side chain, Kcis/trans (7.8) was measured for the
model depicted in Figure 1.
(21) Angelo, N. G.; Arora, P. S. J. Am. Chem. Soc. 2005, 127, 17134.
(22) Egli, M.; Sarkhel, S. Acc. Chem. Res. 2007, 40, 197.
(23) Choudhary, A.; Gandla, D.; Krow, G. R.; Raines, R. T. J. Am.
Chem. Soc. 2009, 131, 7244.
(24) Hodges, J. A.; Raines, R. T. Org. Lett. 2006, 8, 4695.
(25) Butterfoss, G. L.; Renfrew, P. D.; Kuhlman, B.; Kirshenbaum,
K.; Bonneau, R. J. Am. Chem. Soc. 2009, 131, 16798.
(26) (a) Chhatra, R. K.; Kumar, A.; Pandey, P. S. J. Org. Chem. 2011,
76, 9086. (b) Poulain, A.; Canseco-Gonzalez, D.; Hynes-Roche, R.;
Muller-Bunz, H.; Schuster, O.; Stoeckli-Evans, H.; Neels, A.; Albrecht,
M. Organometallics 2011, 30, 1021.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures and additional data. This material is
AUTHOR INFORMATION
■
Corresponding Author
(27) White, N. G.; Beer, P. D. Beilstein J. Org. Chem. 2012, 8, 246.
Notes
The authors declare no competing financial interest.
9556
dx.doi.org/10.1021/ja302342h | J. Am. Chem. Soc. 2012, 134, 9553−9556