Organic Letters
Letter
Y.; Shi, X. Chem. Commun. 2013, 49, 8583. (f) Roux, C.; Bressy, C. In
Comprehensive Enantioselective Organocatalysis; Dalco, P., Ed.; Wiley-
VCH: Weinheim, Germany, 2013; Vol. 3, pp 1013−1042. (g) Rios, R.;
The configuration of products 3 was determined to be
(5R,1′S),17 indicating that the nucleophilic attack of dienolates 6
to intermediate (2R)-9 takes place from the si-face of 6. Figure 2
́
Moyano, A. In Catalytic Asymmetric Conjugate Reaction; Cordova, A.,
Ed.; Wiley-VCH: Weinheim, Germany, 2010; pp 191−218. (h) Tso-
goeva, S. B. Eur. J. Org. Chem. 2007, 2007, 1701.
(2) As a Michael donor, ketones often exhibit anti-selectivity in the
nitro-Michael reaction. See: (a) Andrey, O.; Alexakis, A.; Bernardinelli,
G. Org. Lett. 2003, 5, 2559. (b) Tsogoeva, S. B.; Wei, S. Chem. Commun.
2006, 1451. (c) Huang, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128,
7170. (d) Enders, D.; Chow, S. Eur. J. Org. Chem. 2006, 2006, 4578.
(3) (a) Seebach, D.; Golin
(b) Bures, J.; Armstrong, A.; Blackmond, D. G. J. Am. Chem. Soc. 2011,
133, 8822. (c) Patora-Komisarska, K.; Benohoud, M.; Ishikawa, H.;
Seebach, D.; Hayashi, Y. Helv. Chim. Acta 2011, 94, 719. (d) Bures, J.;
Armstrong, A.; Blackmond, D. G. J. Am. Chem. Soc. 2012, 134, 6741.
(4) (a) Uehara, H.; Barbas, C. F., III Angew. Chem., Int. Ed. 2009, 48,
́
ski, J. Helv. Chim. Acta 1981, 64, 1413.
́
́
Figure 2. Simplified pre-transition-state assembly model optimized at
B3LYP/6-31++G(d,p). Hydrogen atoms are omitted for clarity. Atomic
distances in angstroms.
́
9848. (b) Uehara, H.; Imashiro, R.; Hernandez-Torres, G.; Barbas, C. F.,
III Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20672. (c) Imashiro, R.;
Uehara, H.; Barbas, C. F., III Org. Lett. 2010, 12, 5250. (d) Hong, B. −
C.; Dange, N. S.; Yen, P.-J.; Lee, G.-H.; Liao, J.-H. Org. Lett. 2012, 14,
5346.
(5) (a) Cao, L.-L.; Gao, B.-L.; Ma, S.-T.; Liu, Z.-P. Curr. Org. Chem.
2010, 14, 889. (b) Charette, A. B.; Andre, B.; Lindsay, V. Top. Curr.
Chem. 2013, 343, 33. (c) Chemler, S. R.; Copeland, D. A. Top.
Heterocycl. Chem. 2013, 32, 1861.
(6) (a) Sekikawa, T.; Kitaguchi, T.; Kitaura, H.; Minami, T.; Hatanaka,
Y. Org. Lett. 2015, 17, 3026. (b) Manna, M. S.; Kumar, V.; Mukherjee, S.
Chem. Commun. 2012, 48, 5193. (c) Terada, M.; Ando, K. Org. Lett.
2011, 13, 2026. γ-Butenolides are often subunits of natural products and
biologically active compounds. For a review, see: (d) Alali, F. Q.; Liu, X.-
X.; McLaughlin, J. L. J. Nat. Prod. 1999, 62, 504. (e) Casiraghi, G.; Rassu,
G. Synthesis 1995, 1995, 609.
(7) Lee, C.-J.; Jang, Y.-J.; Wu, Z.-Z.; Lin, W. Org. Lett. 2012, 14, 1906.
(8) Snyder, H. R.; Hamlin, W. E. J. Am. Chem. Soc. 1950, 72, 5082.
(9) (a) Mandal, T.; Zhao, C.-G. Angew. Chem., Int. Ed. 2008, 47, 7714.
(b) He, P.; Liu, X.; Shi, J.; Lin, L.; Feng, X. Org. Lett. 2011, 13, 936.
(10) Chandra Sheker Reddy, A.; Chen, Z.; Hatanaka, T.; Minami, T.;
Hatanaka, Y. Organometallics 2013, 32, 3575.
displays the simplified pre-transition-state assembly model
optimized at B3LYP/6-31++G(d,p) level, which accounts for
the stereochemistry of the nucleophilic attack of 6. To avoid the
steric repulsion between the substituent at the 2-position of the
intermediate (2R)-9 and the 5-substituent of the dienolate 6
bound to 6′-OH via H-bonding, dienolate 6 exposes the si-face to
(2R)-9. Repulsive interaction between the sterically demanding
9-OCH2Ar substituent and quinoline moiety directs the
quinoline moiety to form a hydrogen bond between 6′-OH
and 6. The calculation adequately predicts the sense of the
asymmetric induction.
In conclusion, we have developed a highly anti-selective nitro-
Michael reaction of furanones by a catalyst-controlled switching
of diastereoselectivity. Preliminary DFT calculations suggest that
the anti-selective nitro-Michael addition of aldehydes is
promising under similar conditions.
ASSOCIATED CONTENT
* Supporting Information
■
S
(11) Mantina, M.; Chamberlin, A. C.; Valero, R.; Cramer, C. J.;
Truhlar, D. G. J. Phys. Chem. A 2009, 113, 5806.
The Supporting Information is available free of charge on the
(12) Pyykko, P.; Atsumi, M. Chem. - Eur. J. 2009, 15, 186.
̈
(13) All substrates listed in Table 2 undergo extremely high syn-
selective nitro-Michael reaction in the presence of epi-quinine-derived
3,5-bis(CF3)benzamide catalyst; see ref 6a.
X-ray data for (5R,1S)-naphthyl (CIF)
Experimental procedure and compound characterization
(14) (a) Eliel, E. L.; Wilson, S. H. Stereochemistry of Organic
Compounds; Wiley: New York, 1993; pp 696−697. (b) Eliel, E. L.;
Wilson, S. H.; Doyl, M. P. Basic Organic Chemistry; Wiley: New York,
2001; pp 443−444.
(15) Bella, M.; Gasperi, T. Synthesis 2009, 2009, 1583.
(16) Most of the compounds 3 listed in Table 2 are highly crystalline
materials, which can be easily recrystallized from EtOH to give the
enantiomerically pure 3.
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work has been supported by a Grant-in-Aid for Scientific
Research (C) (20550101) from JSPS.
■
REFERENCES
■
(1) For selected recent review of organocatalytic asymmetric nitro-
Michael reactions and the application to organic synthesis, see:
(a) Somanathan, R.; Chav
Navarrete, A.; Parra-Hake, M.; Aguirre, G.; de Parrod, C. A.;
Gonzalez, J. S. Curr. Org. Chem. 2012, 16, 2440. (b) Chauhan, P.;
́
ez, D.; Servin, F. A.; Romero, J. A.;
́
Chimni, S. S. RSC Adv. 2012, 2, 737. (c) Raimondi, W.; Bonne, D.;
Rodriguez, J. Angew. Chem., Int. Ed. 2012, 51, 40. (d) Serdyuk, O. V.;
Heckel, C. M.; Tsogoeva, S. B. Org. Biomol. Chem. 2013, 11, 7051. (e) Xi,
D
Org. Lett. XXXX, XXX, XXX−XXX