M. Krasavin / Tetrahedron Letters 53 (2012) 2876–2880
2879
F
RBr (1.1 equiv.)
N
NC
*
, 24%
2u, R =
N
N
Pd(OAc)2 (2mol%)
BINAP (4 mol%)
O
N
H
O
N
*
,19%
R
2v, R =
Cs2CO3 (1-3 equiv.)
1b
N
toluene,100 oC, 16-20 h
Scheme 3. Examples of less reactive haloaromatics.
N
N
O
N
H
R
N
RNHR' (1.0 equiv.)
O
N
N
(1.0 equiv.)
N
N
N
N
R'
N
N
N
Pd(OAc)2 (2 mol%)
BINAP (4 mol%)
N
Pd(OAc)2 (2 mol%)
BINAP (4 mol%)
Cs2CO3 (1-3 equiv.)
Br
Cs2CO3 (1-3 equiv.)
toluene, 100 oC, 6-8 h
4, 79%
toluene, 100 oC, 20 h
2c
3a, RNHR' = morpholine, 78%
3b, RNHR' = hexamethyleneimine, 83%
Scheme 4. Further Buchwald-Hartwig reactions of compound 2c.
3. Murray, C. W.; Rees, D. C. Nat. Chem. 2009, 1, 187–192.
2a–t did not exceed 300 Da thereby making these compounds
excellent substrates for fragment-based drug discovery.31
4. Howard, S.; Berdini, V.; Boulstridge, J. A.; Carr, M. G.; Cross, D. M.; Curry, J.;
Devine, L. A.; Early, T. R.; Fazal, L.; Gill, A. L.; Heathcote, M.; Maman, S.;
Matthews, J. E.; McMenamin, R. L.; Navarro, E. F.; O’Brien, M. A.; O’Reilly, M.;
Rees, D. C.; Reule, M.; Tisi, D.; Williams, G.; Vinkovic, M.; Wyatt, P. G. J. Med.
Chem. 2009, 52, 379–388.
5. Woodhead, A. J.; Angove, H.; Carr, M. G.; Chessari, G.; Congreve, M.; Coyle, J.
E.; Cosme, J.; Graham, B.; Day, P. J.; Downham, R.; Fazal, L.; Feltell, R.;
Figueroa, E.; Frederickson, M.; Lewis, J.; McMenamin, R.; Murray, C. W.;
O’Brien, M. A.; Parra, L.; Patel, S.; Phillips, T.; Rees, D. C.; Rich, S.; Smith, D.-M.;
Trewartha, G.; Vinkovic, M.; Williams, B.; Woolford, A. J.-A. J. Med. Chem.
2010, 53, 5956–5969.
6. Abadzapatero, C.; Metz, J. Drug Discovery Today 2005, 10, 464–469.
7. Congreve, M.; Carr, R.; Murray, C.; Jhoti, H. Drug Discovery Today 2003, 8, 876–
877.
8. Evans, B. E. J. Med. Chem. 1988, 31, 2235–2246.
9. Welsch, M. E.; Shyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14,
347–361.
10. Barelier, S.; Krimm, I. Curr. Opin. Chem. Biol. 2011, 15, 469–474.
11. Remko, M.; Swart, M.; Bickelhaupt, F. M. Bioorg. Med. Chem. 2006, 14, 1715–
1728.
12. Ferretti, G.; Dukat, M.; Giannella, M.; Piergentili, A.; Pigini, M.; Quaglia, W.;
Damaj, M. I.; Matrin, B. R.; Glennon, R. A. J. Med. Chem. 2002, 45, 4724–4731.
13. Favaloro, J. L.; Andrews, K. L.; McPherson, G. A. Arch. Pharmacol. 2003, 367, 397–
405.
14. Kahlon, D. K.; Lansdell, T. A.; Fisk, J. S.; Hupp, C. D.; Friebe, T. L.; Hovde, S.;
Jones, A. D.; Dyer, R. D.; Henry, R. W.; Tepe, J. J. J. Med. Chem. 2009, 52, 1302–
1309.
15. Guo, X.-Z.; Shi, L.; Wang, R.; Liu, X.-X.; Li, B.-G.; Lu, X.-X. Bioorg. Med. Chem.
2008, 16, 10301–10310.
The scope of the Pd-catalyzed32 N-(hetero)arylation protocol ap-
pears to be limited to highly reactive 2-haloazines. When applied to
less reactive 5-bromopyrimidine or 4-cyano-2-fluorophenyl
bromide (which we considered sufficiently electron-deficient to
participate in the Buchwald–Hartwig coupling, based on literature
precedence33,34), the yields of the respective N-arylation products
2u–v were markedly lower (Scheme 3). Simple non-activated aryl
halides (iodobenzene, 4-iodobiphenyl) or even 2-haloazines with
electron-donating substituents (2-chloro-5-hydroxypyridine, 4-
amino-2-chloropyrimidine) failed to undergo the desired reaction.
Finally, we were interested to determine if N-heteroaryl imidaz-
olines containing reactive halogen substituents (such as 2c) could
serve as a starting point for introducing further diversity to the no-
vel N-heteroaryl 2-imidazoline scaffold. Quite satisfyingly, 2c
could indeed be used to N-heteroarylate reactive secondary amines
(such as morpholine or hexamethyleneimine) providing high
yields of the fragment-like products 3a,b. Moreover, under the
same conditions, 2c underwent a facile and high-yielding reaction
with a second 2-imidazoline providing access to a novel type of
heteroarene-linked, non-symmetrical 2-imidazoline dimer,
4
(Scheme 4). Dimeric imidazoline derivatives are of significant
interest as potential anti-infective agents.35
16. Hong, S.-S.; Bavadekar, S. A.; Lee, S.-I.; Patil, P. N.; Lalchandani, S. G.; Feller, D.
R.; Miller, D. D. Bioorg. Med. Chem. Lett. 2005, 15, 4691–4695.
17. Li, J.-X.; Zhang, Y. Eur. J. Pharmacol. 2011, 658, 49–56. and references cited
therein..
In conclusion, we have identified a reliable protocol for N-hetero-
arylation of privileged 2-imidazolines and applied it to the synthesis
of
a
diverse set of novel fragment-like compounds.36 These
18. Crouch, R. D. Tetrahedron 2009, 65, 2387–2397.
19. Choi, Y. W.; Rogers, J. A. Pharm. Res. 1990, 7, 508–512.
20. Ryu, J. M.; Lee, J. S.; Park, W. J.; Yun, H.; Kim, K. Y. PCT Int. Appl. WO
2010007987, 175 pp.; Chem. Abstr. 2010, 153, 62137.
compounds will be screened for their affinity to therapeutically
relevant proteins using Fourier-transform mass spectrometry37
and the results will be reported in due course.
21. Caroff, E.; Fretz, H.; Hilpert, K.; Houille, O.; Hubler, F.; Meyer, E. PCT Int. Appl.
WO 2006114774, 381 pp.; Chem. Abstr. 2006, 145, 471852.
22. Rauws, T. R. M.; Maes, B. U. W. Chem. Soc. Rev. 2012, 41, 2463–2497.
23. (a) Several isolated examples of transition metal catalyzed arylations of azine
scaffolds are available in the recent patent literature: (a) Galemmo, R. A., Jr.;
Artis, D. R.; Ye, X. M.; Aubele, D. L.; Truong, A. P.; Bowers, S.; Hom, R. K.; Zhu, Y.-
L.; Neitz, R. J.; Sealy, J.; Adler, M.; Beroza, P.; Anderson, J. P. PCT Int. Appl. WO
2011079118, 439 pp.; Chem. Abstr. 2011, 155, 152558.; (b) Bamberg, J. T.;
Bartlett, M.; Dubois, D. J.; Elworthy, T. R.; Hendricks, R. T.; Hermann, J. C.;
Kondru, R. K.; Lemoine, R.; Lou, Y.; Owens, T. D.; Park, J.; Smith, D. B.; Soth, M.;
Yang, H.; Yee, C. W. US Patent Appl. US 20090215750, 102 pp.. Chem. Abstr.
2009, 151, 313587.
Acknowledgments
The author acknowledges support from Griffith University
(New Researcher Grant 2012, project 215586). Dr. Hoan Vu of Esk-
itis Institute is thanked for high-resolution mass spectrometry
measurements.
24. Buchwald, S. L.; Mauger, C.; Mignani, G.; Scholz, U. Adv. Synth. Catal. 2006, 348,
23–39.
References and notes
25. Fujioka, H.; Murai, K.; Ohba, Y.; Hiramatsu, A.; Kita, Y. Tetrahedron Lett. 2005,
46, 2197–2199.
26. Yang, X.; Liu, H.; Fu, H.; Qiao, R.; Jiang, Y.; Zhao, Y. Synlett 2010, 101–106.
27. Huang, C.; Fu, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Chem. Commun. 2008, 6333–6335.
1. Shuker, S. B.; Hajduk, P. J.; Meadows, R. P.; Fesik, S. W. Science 1996, 274, 1531–
1534.
2. Congreve, M.; Chessari, G.; Tisi, D.; Woodhead, A. J. J. Med. Chem. 2008, 51,
3661–3680.