ORGANIC
LETTERS
2012
Vol. 14, No. 11
2690–2693
[3 þ 2]-Dipolar Cycloaddition Reactions of
an N-Heterocyclic Carbene Boryl Azide
†
†
†
Everett Merling, Vladimir Lamm, Steven J. Geib, Emmanuel Lacote,‡,§ and
^
Dennis P. Curran*,†
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260,
^
United States, ICSN CNRS, Batiment 27, Av. de la Terrasse, 9118 Gif-sur-Yvette
Cedex, France, and UPMC Sorbonne Universites, Institut Parisien de Chimie
ꢀ
ꢀ
Moleculaire (UMR CNRS 7201), 4 place Jussieu, C. 229, 75005 Paris, France
Received April 3, 2012
ABSTRACT
Thermal 1,3-dipolar cycloaddition reactions of 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene dihydridoboron azide occur smoothly with
alkynes, nitriles, and alkenes bearing electron-withdrawing groups. New, stable NHC-boryl-substituted triazoles, tetrazoles, and triazolidines are
formed in good to excellent yields.
Recent studies of N-heterocyclic carbene-boranes
(NHC-boranes) are unearthing a surprisingly rich chem-
istry for compounds that can be viewed as simple Lewis
acid/Lewis base complexes.1 A key feature of many classes
of complexes is that they are stable to air and water and do
not dissociate even under relatively forcing conditions.2
Carbene-boranes are of interest as reagents in organic
synthesis3 and as initiators in polymer chemistry.4 And
the study of carbene-boranes as reactants has led to the
synthesis of diverse stable compounds with unusual boron
substituents and bonding patterns.1,5
† University of Pittsburgh.
‡ ICSN CNRS.
§
ꢀ
UPMC Sorbonne Universites.
(1) (a) Curran, D. P.; Solovyev, A.; Makhlouf Brahmi, M.;
^
Fensterbank, L.; Malacria, M.; Lacote, E. Angew. Chem., Int. Ed.
Figure 1 shows a relatively general method to make
heteroatom-substituted NHC-boranes starting from the
2011, 50, 10294–10317. (b) Wang, Y.; Robinson, G. H. Inorg. Chem.
2011, 50, 12326–12337.
(2) Makhouf Brahmi, M.; Monot, J.; Desage-El Murr, M.; Curran,
^
D. P.; Fensterbank, L.; Lacote, E.; Malacria, M. J. Org. Chem. 2010, 75,
6983–6985.
(3) (a) Monot, J.; Makhlouf Brahmi, M.; Ueng, S.-H.; Robert, C.;
Desage-El Murr, M.; Curran, D. P.; Malacria, M.; Fensterbank, L.;
(5) (a) Wang, Y.; Quillian, B.; Wei, P.; Wannere, C. S.; Xie, Y.; King,
R. B.; Schaefer, H. F.; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem.
Soc. 2007, 129, 12412–12413. (b) Wang, Y.; Quillian, B.; Wei, P.; Xie,
Y. M.; Wannere, C. S.; King, R. B.; Schaefer, H. F.; Schleyer, P. v. R.;
Robinson, G. H. J. Am. Chem. Soc. 2008, 130, 3298–3299. (c) Monot, J.;
^
Lacote, E. Org. Lett. 2009, 11, 4914–4917. (b) Chu, Q.; Makhlouf
Brahmi, M.; Solovyev, A.; Ueng, S.-H.; Curran, D. P.; Malacria, M.;
ꢀ
^
Fensterbank, L.; Lacote, E. Chem.;Eur. J. 2009, 15, 12937–12940. (c)
Solovyev, A.; Bonin-Dubarle, H.; Derat, E.; Curran, D. P.; Robert, M.;
^
Ueng, S.-H.; Fensterbank, L.; Lacote, E.; Malacria, M.; Curran, D. P.
^
^
Fensterbank, L.; Malacria, M.; Lacote, E. Angew. Chem., Int. Ed. 2010,
49, 9166–9169. (d) Braunschweig, H.; Chiu, C.-W.; Radacki, K.; Kupfer,
Org. Lett. 2010, 12, 3002–3005. (d) Horn, M.; Mayr, H.; Lacote, E.;
Merling, E.; Deaner, J.; Wells, S.; McFadden, T.; Curran, D. P. Org.
T. Angew. Chem., Int. Ed. 2010, 49, 2041–2044. (e) Jana, A.; Azhakar, R.;
^
ꢀ
Lett. 2012, 14, 82–85. (e) Pan, X.; Lacote, E.; Lalevee, J.; Curran, D. P.
J. Am. Chem. Soc. 2012, 134, 5669–5674. (f) Lindsay, D. M.; McArthur,
D. Chem. Commun. 2010, 46, 2474–2476.
ꢁ
Tavcar, G.; Roesky, H. W.; Objartel, I.; Stalke, D. Eur. J. Inorg. Chem.
2011, 3686–3689. (f) Wang, Y.; Xie, Y.; Abraham, M. Y.; Wei, P.;
Schaefer, H. F.; Schleyer, P. v. R.; Robinson, G. H. Organometallics
2011, 30, 1303–1306. (g) Bissinger, P.; Braunschweig, H.; Damme, A.;
Dewhurst, R. D.; Kupfer, T.; Radacki, K.; Wagner, K. J. Am. Chem.
Soc. 2011, 133, 19044–19047. (h) McArthur, D.; Butts, C. P.; Lindsay,
D. M. Chem. Commun. 2011, 47, 6650–6652. (i) Solovyev, A.; Geib, S. J.;
(4) (a) Tehfe, M.-A.; Makhlouf Brahmi, M.; Fouassier, J.-P.;
^
ꢀ
Curran, D. P.; Malacria, M.; Fensterbank, L.; Lacote, E.; Lalevee, J.
Macromolecules 2010, 43, 2261–2267. (b) Tehfe, M.-A.; Monot, J.;
Makhlouf Brahmi, M.; Bonin-Dubarle, H.; Curran, D. P.; Malacria,
^
ꢀ
^
Lacote, E.; Curran, D. P. Organometallics 2012, 31, 54–56. (j) Curran,
M.; Fensterbank, L.; Lacote, E.; Lalevee, J.; Fouassier, J.-P. Polym.
ꢂ
^
Chem. 2011, 2, 625–631. (c) Tehfe, M.-A.; Monot, J.; Malacria, M.;
D. P.; Boussonniere, A.; Geib, S. J.; Lacote, E. Angew. Chem., Int. Ed.
2012, 51, 1602–1605. (k) Bissinger, P.; Braunschweig, H.; Kraft, K.;
Kupfer, T. A Angew. Chem. Int. Ed. 2011, 50, 4704–4707.
^
Fensterbank, L.; Fouassier, J.-P.; Curran, D. P.; Lacote, E.; Lalevee,
ꢀ
J. ACS Macro Lett. 2011, 1, 92–95.
r
10.1021/ol300851m
Published on Web 05/22/2012
2012 American Chemical Society