ROZENTSVEIG et al.
484
3
3
SO2NH, J = 9.0 Hz), 10.08 d (2H, NHC=S, J =
9.5 Hz). 13C NMR spectrum (DMSO-d6), δC, ppm:
74.0 (CH), 98.9 (CCl3); 128.7. 129.2, 138.2, 138.5
(C6H4); 185.31 (C=S). Found, %: C 28.30; H 1.72;
Cl 37.10; N 7.21; S 16.76. C18H14Cl8N4O4S4. Calculat-
ed, %: C 28.37; H 1.85; Cl 37.21; N 7.35; S 16.83.
(C6H4); 184.7 (C=S). Found, %: C 42.47; H 2.74;
Cl 25.03; N 6.51; S 15.05. C30H24Cl6N4O4S4. Calculat-
ed, %: C 42.62; H 2.86; Cl 25.16; N 6.63; S 15.17.
REFERENCES
1. Levkovskaya, G.G., Drozdova, T.I., Rozentsveig, I.B.,
N,N′-Bis[2,2,2-trichloro-1-(4-methylphenylsul-
fonylamino)ethyl]ethanedithioamide (Vc) was syn-
thesized from 1.51 g (0.005 mol) of Ic and 0.30 g
(0.0025 mol) of ethanedithioamide. Yield 1.26 g
(70%), mp 146–148°C. IR spectrum, ν, cm–1: 3259,
and Mirskova, A.N., Usp. Khim., 1999, vol. 68, p. 638.
2. Drach, B.S., Brovarets, V.S., and Smolii, O.B., Sintez
azotsoderzhashchikh geterotsiklicheskikh soedinenii na
osnove amidoalkiliruyushchikh agentov (Synthesis of
Heterocyclic Compounds on the Basis of Amidoalkylat-
ing Agents), Kiev: Naukova Dumka, 1992.
1
3085 (NH), 1655, 1333, 1165 (SO2). H NMR spec-
trum (DMSO-d6), δ, ppm: 2.25 s (6H, CH3), 6.29 d.d
3. Rozentsveig, I.B., Evstaf’eva, I.T., Sarapulova, G.I.,
Levkovskaya, G.G., and Aizina, J.A., Arkivoc, 2003,
part (xiii), p. 45.
4. Rozentsveig, I.B., Levkovskaya, G.G., Rozentsveig, G.N.,
Mirskova, A.N., Krivdin, L.B., Larina, L.I., and Alba-
nov, A.I., Tetrahedron Lett., 2005, vol. 46, p. 8889.
5. Rozentsveig, I.B., Popov, A.V., Rozentsveig, G.N., Se-
rykh, V.Yu., Chernyshev, K.A., Krivdin, L.B., and Lev-
kovskaya, G.G., Mol. Diversity, 2010, vol. 14, p. 533.
6. Rozentsveig, G.N., Rozentsveig, I.B., Levkovskaya, G.G.,
and Mirskova, A.N., Russ. J. Org. Chem., 2003, vol. 39,
p. 1804.
7. Rozentsveig, I.B., Popov, A.V., Rozentsveig, G.N.,
Chernyshev, K.A., and Levkovskaya, G.G., Khim.
Geterotsikl. Soedin., 2008, p. 1587.
8. Rozentsveig, G.N., Aizina, Yu.A., Rozentsveig, I.B.,
Levkovskaya, G.G., Sarapulova, G.I., Mirskova, A.N.,
and Drozdova, T.I., Russ. J. Org. Chem., 2003, vol. 39,
p. 554.
9. Jagodzinski, T.S., Chem. Rev., 2003, vol. 103, p. 197.
10. Smirnova, N.G., Zavarzin, I.V., and Krayushkin, M.M.,
Chem. Heterocycl. Compd., 2006, vol. 42, p. 144.
11. Nizovtseva, T.V., Komarova, T.N., and Nakhmano-
vich, A.S., Russ. J. Gen. Chem., 2006, vol. 76, p. 659.
12. Helmchen, G., Krotz, A., Ganz, K.-T., and Hansen, D.,
Synlett, 1991, p. 257.
13. Desseyn, H.O., Pure Appl. Chem., 1989, vol. 61, p. 867.
3
(2H, CH, J = 9.4, 9.5 Hz), 7.16 and 7.58 (8H, C6H4,
3
AA′BB′), 9.43 d (2H, SO2NH, J = 9.5 Hz), 10.10 d
3
(2H, NHC=S, J = 9.4 Hz). 13C NMR spectrum
(DMSO-d6), δC, ppm: 21.1 (CH3), 74.1 (CH), 99.3
(CCl3); 126.7, 129.4, 136.9, 143.4 (C6H4); 185.1
(C=S). Found, %: C 33.23; H 2.73; Cl 29.35; N 7.67;
S 17.68. C20H20Cl6N4O4S4. Calculated, %: C 33.30;
H 2.79; Cl 29.49; N 7.77; S 17.78.
Compounds VIa and VIb were synthesized as
described above for IVa using 2 equiv of imine
IIa or IIb.
N,N′-Bis[2,2-dichloro-2-phenyl-1-(phenylsul-
fonylamino)ethyl]ethanedithioamide (VIa) was syn-
thesized from 1.64 g (0.005 mol) of IIa and 0.30 g
(0.0025 mol) of ethanedithioamide. Yield 1.51 g
(78%), mp 93–95°C. IR spectrum, ν, cm–1: 3320, 3095
1
(NH), 1595, 1335, 1170 (SO2). H NMR spectrum
3
(DMSO-d6), δ, ppm: 6.45 d.d (2H, CH, J = 9.4,
9.8 Hz); 7.46 m, 7.47 m, 7.68 m, and 7.78 m (20H,
3
C6H5), 9.15 d (2H, SO2NH, J = 9.4 Hz), 10.06 d (2H,
NHC=S, 3J = 9.8 Hz). 13C NMR spectrum (DMSO-d6),
δC, ppm: 72.5 (CH), 93.3 (CCl2); 125.4, 128.0, 132.4,
139.1 (SO2C6H5); 127.2, 128.4, 130.4, 139.5 (C6H5);
185.3 (C=S). Found, %: C 46.48; H 3.31; Cl 18.39;
N 7.35; S 16.71. C30H26Cl4N4O4S4. Calculated, %:
C 46.40; H 3.37; Cl 18.26; N 7.21; S 16.51.
14. Roy, P. and Srivastava, S.K., Cryst. Growth Des., 2006,
vol. 6, p. 1921.
N,N′-Bis[2,2-dichloro-1-(4-chlorophenylsulfonyl-
amino)-2-phenylethyl]ethanedithioamide (VIb) was
synthesized from 1.82 g (0.005 mol) of IIb and 0.30 g
(0.0025 mol) of ethanedithioamide. Yield 1.80 g
(85%), mp 160–162°C. IR spectrum, ν, cm–1: 3310,
15. Lapinski, L., Rostkowska, H., Khvorostov, A.,
Yaman, M., Fausto, R., and Nowak, M.J., J. Phys.
Chem. A, 2004, vol. 108, p. 5551.
16. Desseyn, H.O., Perlepes, S.P., Clou, K., Blaton, N., van
der Veken, B.J., Dommisse, R., and Hansen, P.E.,
J. Phys. Chem. A, 2004, vol. 108, p. 5175.
17. Krivdin, L.B., Chernyshev, K.A., Rosentsveig, G.N.,
Ushakova, I.V., Rosentsveig, I.B., and Levkov-
skaya, G.G., Magn. Reson. Chem., 2007, vol. 45, p. 980.
18. Rozentsveig, I.B., Rozentsveig, G.N., Mirskova, A.N.,
Chernyshev, K.A., Krivdin, L.B., and Levkov-
skaya, G.G., Russ. J. Gen. Chem., 2008, vol. 78, p. 1371.
1
3112 (NH), 1577, 1345, 1169 (SO2). H NMR spec-
3
trum (DMSO-d6), δ, ppm: 6.48 d.d (2H, CH, J = 9.3,
9.8 Hz), 7.44 and 7.62 (8H, C6H4, AA′BB′), 7.49 m and
7.66 m (10H, C6H5), 9.11 d (2H, SO2NH, 3J = 9.3 Hz),
10.08 d (2H, NHC=S, 3J = 9.8 Hz). 13C NMR spectrum
(DMSO-d6), δC, ppm: 72.6 (CH), 93.4 (CCl2); 127.4,
128.4, 130.0, 138.9 (C6H5); 128.5, 128.9, 136.9, 137.8
RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 48 No. 4 2012