Oxidative homodimerization of enamino ketones or esters
for the synthesis of pyrrole has been described in the literature
under electrochemical conditions7 or by using Pb(OAc)4,8
Ce(IV),9 and PhI(OAc)210 as the oxidants (Scheme 1a). How-
indole using o-halo-aniline with aldehyde via an enamine
intermediate,15 we recently questioned whether the pyrrole
product could be obtained via oxidative homodimerization
of the enamine intermediate, formed in situ by reaction of
amine (aniline) and aldehyde, with an appropriate oxidant
(Scheme 1b). Herein, we demonstrate the first efficient and
direct approach to polysubstituted pyrroles from simple and
readily available amine (aniline) and aldehyde by using
AgOAc as the oxidant in a one-pot manner.
Scheme 1. (a) Homodimerization of the Enamino Ketones or
Esters and (b) Homodimerization of Enamines Formed in Situ
Drectly from Simple Amines and Aldehydes
To test this activation concept, reaction of 4-methoxya-
niline 1a with butylaldehyde 2a was initially attempted under
oxidative conditions [Pd(OAc)2 (5 mol %), Cu(OAc)2 (2
equiv), AgOAc (2 equiv)]. Gratifyingly, the pyrrole product
3a was obtained in 24% yield as the only detectable product.
A condition survey quickly revealed that Pd(OAc)2 and
Cu(OAc)2 were not necessary, and AgOAc (2 equiv) alone
could promote this reaction well (see Supporting Informa-
tion). In addition, the use of equivalent amounts of amine
and aldehyde was crucial for obtaining good yield (see
Scheme 2). A wide variety of reaction conditions (silver
ever, the substrates are limited to enamino ketones or esters,
and these must be prepared before use.7-10 The oxidative
homodimerization of aldehyde enamine has never been
reported.11 In fact, pure aldehyde enamines are rarely
employed in organic synthesis due to the limitations of their
preparation and the isolation restrictions.12
Scheme 2. Proposed Mechanism for the Transformations
Recently, oxidative coupling reactions have proven to be
excellent and efficient methods for formation of C-C
bonds.13,14 In connection with our work for preparation of
(5) For select recent examples for pyrrole syntheses, see: (a) Dhawan,
R.; Arndtsen, B. A. J. Am. Chem. Soc. 2004, 126, 468–469. (b) Nishibayashi,
Y.; Yoshikawa, M.; Inada, Y.; Milton, D. M.; Hidai, M.; Uemura, S. Angew.
Chem., Int. Ed. 2003, 42, 2681–2684. (c) Tejedor, D.; Gonzalez-Cruz, D.;
Garcia-Tellado, F.; Marrero-Tellado, J. J.; Rodriguez, M. L. J. Am. Chem.
Soc. 2004, 126, 8390–8391. (d) Gorin, D. J.; Davis, N. R.; Toste, F. D.
J. Am. Chem. Soc. 2005, 127, 11260–11261. (e) Kamijo, S.; Kanazawa,
C.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 9260–9266. (f) Larionov,
O. V.; de Meijere, A. Angew. Chem., Int. Ed. 2005, 44, 5664–5667. (g)
Mart´ın, R.; Rivero, M. R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006,
45, 7079–7082. (h) Wan, X.; Xing, D.; Fang, Z.; Li, B.; Zhao, F.; Zhang,
K.; Yang, L.; Shi, Z. J. Am. Chem. Soc. 2006, 128, 12046–12047. (i)
Seregin, I. V.; Gevorgyan, V. J. Am. Chem. Soc. 2006, 128, 12050–12051.
(j) Su, S.; Porco, J. A., Jr. J. Am. Chem. Soc. 2007, 129, 7744–7745. (k)
St. Cyr, D. J.; Arndtsen, B. A. J. Am. Chem. Soc. 2007, 129, 12366–12367.
(l) Lu, Y.; Arndtsen, B. A. Angew. Chem., Int. Ed. 2008, 47, 5430–5433.
(m) Liu, W.; Jiang, H.; Huang, L. Org. Lett. 2010, 12, 312–315.
(6) (a) Galliford, C. V.; Scheidt, K. A. J. Org. Chem. 2007, 72, 1811–
1813. (b) Ragaini, F.; Cenini, S.; Brignoli, D.; Gasperini, M.; Gallo, E. J.
Org. Chem. 2003, 68, 460–466. (c) Jones, R. A.; Bean, G. P. The Chemistry
of Pyrroles; Academic Press: London, 1977.
source oxidants, solvents, and additives) were also examined,
and some of the representative results are shown in Table 1.
AgOAc turned out to be the oxidant of choice, albeit Ag2CO3
was also capable of promoting the reaction but with lower
yield (entries 1-4). The solvent also played a very important
role in this reaction (entries 1 and 6-8). Further studies
indicated that the addition of a base such as pyridine or
NaOAc dramatically increased the yield of 3a (entries
(13) For recent examples about the oxidative coupling reaction, see: (a)
Beeson, T. D.; Mastracchio, A.; Hong, J.-B.; Ashton, K.; MacMillan,
D. W. C. Science 2007, 316, 582–585. (b) Conrad, J. C.; Kong, J.; Laforteza,
B. N.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 11640–11641.
(c) DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc. 2008, 130,
11546–11560. (d) Nicolaou, K. C.; Reingruber, R.; Sarlah, D.; Brase, S.
J. Am. Chem. Soc. 2009, 131, 2086–2087. (e) Guo, X.; Yu, R.; Li, H.; Li,
Z. J. Am. Chem. Soc. 2009, 131, 17387–17393. (f) Kno¨lker, H.-J. Chem.
Lett. 2009, 38, 8–13.
(7) Koch, D.; Scha¨fer, H. Angew. Chem., Int. Ed. 1973, 12, 245–246.
(8) (a) Khetan, S. K. J. Chem. Soc., Chem. Commun. 1972, 917. (b)
Carr, R. M.; Norman, R. O. C.; Vernon, J. M. J. Chem. Soc., Chem.
Commun. 1977, 854–855. (c) Carr, R. M.; Norman, R. O. C.; Vernon, J. M.
J. Chem. Soc., Perkin Trans. 1 1980, 156–162. (d) Sukari, M. A.; Vernon,
J. M. Tetrahedron 1983, 39, 793–796.
(9) (a) Herten, B. W.; Poulton, G. A. J. Chem. Soc., Chem. Commun.
1975, 456–457. (b) Tsai, A.; Chuang, C.-P. Tetrahedron 2006, 62, 2235–
2239.
(14) For recent examples about oxidative coupling reaction for synthesis
of indoles, see: (a) Wu¨rtz, S.; Rakshit, S.; Neumann, J. J.; Dro¨ge, T.; Glorius,
F. Angew. Chem., Int. Ed. 2008, 47, 7230–7233. (b) Bernini, R.; Fabrizi,
G.; Sferrazza, A.; Cacchi, S. Angew. Chem., Int. Ed. 2009, 48, 8078–8081.
(c) Yu, W.; Du, Y.; Zhao, K. Org. Lett. 2009, 11, 2417–2420. (d) Guan,
Z.-H.; Yan, Z.-Y.; Ren, Z.-H.; Liu, X.-Y.; Liang, Y.-M. Chem. Commun.
2010, 2823–2825.
(10) (a) Wang, J.-Y.; Liu, S.-P.; Yu, W. Synlett 2009, 2529–2533. (b)
Also see ref 5m.
(11) Periasamy reported that pyrroles could be prepared from aryl methyl
ketimines by using TiCl4/Et3N as oxidant, but the substrates were limited
to aryl methyl ketones. See: Periasamy, M.; Srinivas, G.; Bharathi, P. J.
Org. Chem. 1999, 64, 4204–4205.
(15) (a) Jia, Y.; Zhu, J. J. Org. Chem. 2006, 71, 7826–7834. (b) Jia, Y.;
Zhu, J. Synlett 2005, 2469–2472. (c) Xu, Z.; Hu, W.; Zhang, F.; Li, Q.;
Lu, Z.; Zhang, L.; Jia, Y. Synthesis 2008, 3981–3987. (d) Xu, Z.; Li, Q.;
Zhang, L.; Jia, Y. J. Org. Chem. 2009, 74, 6859–6862. (e) Hu, C.; Qin, H.;
Cui, Y.; Jia, Y. Tetrahedron 2009, 65, 9075–9080. (f) Hu, W.; Zhang, F.;
Xu, Z.; Liu, Q.; Cui, Y.; Jia, Y. Org. Lett. 2010, 12, 956–959.
(12) (a) Be´langer, G.; Dore´, M.; Me´nard, F.; Darsigny, V. J. Org. Chem.
ˇ
2006, 71, 7481–7484. (b) Cervinka, O. In The Chemistry of Enamines, Part
1; Rappoport, Z., Ed.; John Wiley & Sons: New York, 1994; Chapter 9, p
467.
Org. Lett., Vol. 12, No. 18, 2010
4067