ACS Medicinal Chemistry Letters
Letter
H.; Schwartz, B.; Brandt, M. Development and Validation of Reagents
and Assays for EZH2 Peptide and Nucleosome High-Throughput
Screens. J. Biomol. Screening 2012, 17, 1279−1292.
(10) Knutson, S. K.; Wigle, T. J.; Warholic, N. M.; Sneeringer, C. J.;
Allain, C. J.; Klaus, C. R.; Sacks, J. D.; Raimondi, A.; Majer, C. R.;
Song, J.; Scott, M. P.; Jin, L.; Smith, J. J.; Olhava, E. J.; Chesworth, R.;
Moyer, M. P.; Richon, V. M.; Copeland, R. A.; Keilhack, H.; Pollock,
R. M.; Kuntz, K. W. A Selective Inhibitor of EZH2 Blocks H3K27
Methylation and Kills Mutant Lymphoma Cells. Nat. Chem. Biol. 2012,
8, 890−896.
(11) McCabe, M. T.; Ott, H. M.; Ganji, G.; Korenchuk, S.;
Thompson, C.; Van Aller, G. S.; Liu, Y.; Graves, A. P.; Della Pietra, A.,
III; Diaz, E.; LaFrance, L. V.; Mellinger, M.; Duquenne, C.; Tian, X.;
Kruger, R. G.; McHugh, C. F.; Brandt, M.; Miller, W. H.; Dhanak, D.;
Verma, S. K.; Tummino, P. J.; Creasy, C. L. EZH2 Inhibition as a
Therapeutic Strategy for Lymphoma with EZH2-Activating Mutations.
Nature 2012, 492, 108−112.
(23) Dahlgard, M.; Brewster, R. Q. Absorption Spectra of Some
Highly Substituted Diaryl Ethers. J. Am. Chem. Soc. 1958, 80, 5861−
5863.
(24) Gusakova, N. N.; Pankratov, A. N.; Fedorov, E. E.; Mushtakova,
S. P.; Gribov, L. A. Calculation of the Conformation of Diphenylamine
and its ortho- and para-Nitro-Derivatives by the Method of Atom−
Atom Potentials. J. Struct. Chem. 1981, 22, 341−345.
(25) Brameld, K. A.; Kuhn, B.; Reuter, D. C.; Stahl, M. Small
Molecule Conformational Preferences Derived from Crystal Structure
Data. A Medicinal Chemistry Focused Analysis. J. Chem. Inf. Model.
2008, 48, 1−24.
(26) Thomas, V. H.; Bhattachar, S.; Hitchingham, L.; Zocharski, P.;
Naath, M.; Surendran, N.; Stoner, C. L.; El-Kattan, A. The Road Map
to Oral Bioavailability: An Industrial Perspective. Expert Opin. Drug
Metab. Toxicol. 2006, 2, 591−608.
(27) For additional ADME and in vivo characterization of 44, please
see the Supporting Information.
(12) Qi, W.; Chan, H.; Teng, L.; Li, L.; Chuai, S.; Zhang, R.; Zeng, J.;
Li, M.; Fan, H.; Lin, Y.; Gu, J.; Ardayfio, O.; Zhang, J.-H.; Yan, X.;
Fang, J.; Mi, Y.; Zhang, M.; Zhou, T.; Feng, G.; Chen, Z.; Li, G.; Yang,
T.; Zhao, K.; Liu, X.; Yu, Z.; Lu, C.; Atadja, P.; Li, E. Selective
Inhibition of EZH2 by a Small Molecule Inhibitor Blocks Tumor Cell
Proliferation. Proc. Natl. Acad. Sci. 2012, 109, 21360−21365.
(13) Verma, S. K.; Tian, X.; LaFrance, L. V.; Duquenne, C.; Suarez,
D. P.; Newlander, K. A.; Romeril, S. P.; Burgess, J. L.; Grant, S. W.;
Brackley, J. A.; Graves, A. P.; Scherzer, D. A.; Shu, A.; Thompson, C.;
Ott, H. M.; Van Aller, G. S.; Machutta, C. A.; Diaz, E.; Jiang, Y.;
Johnson, N. W.; Knight, S. D.; Kruger, R. G.; McCabe, M. T.; Dhanak,
D.; Tummino, P. J.; Creasy, C. L.; Miller, W. H. Identification of
Potent, Selective, Cell-Active Inhibitors of the Histone Lysine
Methyltransferase EZH2. ACS Med. Chem. Lett. 2012, 3, 1091−1096.
(14) Konze, K. D.; Ma, A.; Li, F.; Barsyte-Lovejoy, D.; Parton, T.;
MacNevin, C. J.; Liu, F.; Gao, C.; Huang, X.-P.; Kuznetsova, E.;
Rougie, M.; Jiang, A.; Pattenden, S. G.; Norris, J. L.; James, L. I.; Roth,
B. L.; Brown, P. J.; Frye, S. V.; Arrowsmith, C. H.; Hahn, K. M.; Wang,
G. G.; Vedadi, M.; Jin, J. An Orally Bioavailable Chemical Probe of the
Lysine Methyltransferases EZH2 and EZH1. ACS Chem. Biol. 2013, 8,
1324−1334.
(15) Kuntz, K. W.; Chesworth, R.; Duncan, K. W.; Keilhack, H.;
Warholic, N.; Klaus, C.; Kathleen, S. K.; Wigle, T. J. N.; Seki, M.;
Shirotori, S.; Kawano, S. Aryl- or Heteroaryl-Substituted Benzene
Compounds. U.S. Patent Appl. 20130123234, 2013.
(16) Sweis, R. F.; Michaelides, M. R. Chapter Thirteen: Recent
Advances in Small-Molecule Modulation of Epigenetic Targets:
Discovery and Development of Histone Methyltransferase and
Bromodomain Inhibitors. Annu. Rep. Med. Chem. 2013, 48, 185−203.
(17) Shivani Garapaty-Rao, S.; Nasveschuk, C. G.; Gagnon, A.; Chan,
E. Y.; Sandy, P.; Busby, J.; Balasubramanian, S.; Campbell, R.; Zhao,
F.; Bergeron, L.; Audia, J. E.; Albrecht, B. K.; Harmange, J.-C.;
Cummings, R.; Trojer, P. Identification of EZH2 and EZH1 Small
Molecule Inhibitors with Selective Impact on Diffuse Large B Cell
Lymphoma Cell Growth. Chem. Biol. 2013, 20, 1329−1339.
(18) Shoichet, B. K. Interpreting Steep Dose-Response Curves in
Early Inhibitor Discovery. J. Med. Chem. 2006, 49, 7274−7277.
(19) Under standard assay conditions, genuine inhibitors should have
Hill coefficients of 1 while those with undesired mechanisms of
inhibition, e.g., covalent modifiers, promiscuous aggregators, etc.,
generally have steeper Hill coefficients. We chose as a cutoff those that
had Hill coefficients of 0.7−1.5 for further study.
(20) Cheng, Y.; Prusoff, W. H. Relationship Between the Inhibition
Constant (Ki) and the Concentration of Inhibitor, Which Causes 50
Per Cent Inhibition (I50) of an Enzymatic Reaction. Biochem.
Pharmacol. 1973, 22, 3099−3108.
(21) Shultz, M. D. Improving the Plausibility of Success with
Inefficient Metrics. Bioorg. Med. Chem. Lett. 2013, 23, 5980−5991.
(22) Shultz, M. D. The Thermodynamic Basis for the Use of
Lipophilic Efficiency (LipE) in Enthalpic Optimizations. Bioorg. Med.
Chem. Lett. 2013, 23, 5992−6000.
383
dx.doi.org/10.1021/ml400494b | ACS Med. Chem. Lett. 2014, 5, 378−383