Organic Letters
Letter
2010, 49, 31. (c) Zhou, Y.; Lecourt, T.; Micouin, L. Angew. Chem., Int.
Ed. 2010, 49, 2607. (d) Hein, J. E.; Tripp, J. C.; Krasnova, L. B.;
Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2009, 48, 8018.
(9) (a) Schulman, J. M.; Friedman, A. A.; Panteleev, J.; Lautens, M.
Chem. Commun. 2012, 48, 55. (b) Ackermann, L.; Vicente, R. Org. Lett.
2009, 11, 4922. (c) Ackermann, L.; Potukuchi, H. K.; Landsberg, D.;
Vicente, R. Org. Lett. 2008, 10, 3081. (d) Chuprakov, S.; Chernyak, N.;
Dudnik, A. S.; Gevorgyan, V. Org. Lett. 2007, 9, 2333.
(10) (a) Ackermann, L.; Potukuchi, H. K. Org. Biomol. Chem. 2010,
8, 4503. (b) Smith, C. D.; Greaney, M. F. Org. Lett. 2013, 15, 4826.
(c) Zhang, X.; Hsung, R. P.; Li, H. Chem. Commun. 2007, 2420.
(d) Cai, Q.; Yan, J.; Ding, K. Org. Lett. 2012, 14, 3332.
(11) (a) Song, C.; Wang, J.; Xu, Z. Org. Biomol. Chem. 2014, 12,
5802. (b) Song, C.; Ju, L.; Wang, M.; Liu, P.; Zhang, Y.; Wang, J.; Xu,
Z. Chem.Eur. J. 2013, 19, 3584. (c) Song, C.; Sun, D.; Peng, X.; Bai,
J.; Zhang, R.; Hou, S.; Wang, J.; Xu, Z. Chem. Commun. 2013, 49,
9167. (d) Song, C.; Dong, S.; Feng, L.; Peng, X.; Wang, M.; Wang, J.;
Xu, Z. Org. Biomol. Chem. 2013, 11, 6258.
(12) (a) Li, W.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 14186.
(b) Thomas, J.; John, J.; Parekh, N.; Dehaen, W. Angew. Chem., Int. Ed.
2014, 53, 10155. (c) Wang, L.; Peng, S.; Danence, L. J. T.; Gao, Y.;
Wang, J. Chem.Eur. J. 2012, 18, 6088. (d) Belkheira, M.; Abed, D.
E.; Pons, J.-M.; Bressy, C. Chem.Eur. J. 2011, 17, 12917.
(e) Ramachary, D. B.; Ramakumar, K.; Narayana, V. V. Chem.Eur.
J. 2008, 14, 9143.
desired product 10 in 91% yield. The three-component click
reaction between p-iodoanisole, tyrosine, and lysine blocks was
also successful and produced the corresponding triazole 13 in
60% yield.
In summary, we have developed a Cu/Pd transmetalation
relay catalysis for the construction of trisubstituted triazoles
from azide, alkyne, and aryl halide. This method represents a
general modular synthesis of trisubstituted triazoles from easily
available materials. Application of this protocol led to the
bioactive triazole derivatives in a highly efficient and practical
manner. Because of the unique structure of the triazoles and the
notable features of this protocol, such as high atom and step
economy, mild conditions, high efficiency and regioselectivity,
and a broad substrate scope, we believe that this method should
be useful for drug discovery and development.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental detailes, crystal structure of 4ha, and character-
ization data. The Supporting Information is available free of
(13) (a) Chen, Z.; Yan, Q.; Liu, Z.; Xu, Y.; Zhang, Y. Angew. Chem.,
Int. Ed. 2013, 52, 13324. (b) Zhang, H.; Tanimoto, H.; Morimoto, T.;
Nishiyama, Y.; Kakiuchi, K. Org. Lett. 2013, 15, 5222. (c) Sengupta, S.;
Duan, H.; Lu, W.; Petersen, J. L.; Shi, X. Org. Lett. 2008, 10, 1493.
(d) Zhou, F.; Tan, C.; Tang, J.; Zhang, Y.-Y.; Gao, W.-M.; Wu, H.-H.;
Yu, Y.-H.; Zhou, J. J. Am. Chem. Soc. 2013, 135, 10994.
(14) (a) He, C.; Ke, J.; Xu, H.; Lei, A. Angew. Chem., Int. Ed. 2013,
52, 1527. (b) Worrell, B. T.; Malik, J. A.; Fokin, V. V. Science 2013,
340, 457. (c) Rodionov, V. O.; Fokin, V. V.; Finn, M. G. Angew. Chem.,
Int. Ed. 2005, 44, 2210.
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
∥These authors contributed equally to this work.
Notes
The authors declare no competing financial interest.
(15) Yu, F.; Wang, Q.; Zhang, Z.; Peng, Y.; Qiu, Y.; Shi, Y.; Zheng,
Y.; Xiao, S.; Wang, H.; Huang, X.; Zhu, L.; Chen, K.; Zhao, C.; Zhang,
C.; Yu, M.; Sun, D.; Zhang, L.; Zhou, D. J. Med. Chem. 2013, 56, 4300.
ACKNOWLEDGMENTS
We are grateful for the subject construction funds from
Shandong University (Nos. 2014JC008 and 104.205.2.5).
■
REFERENCES
■
(1) For reviews, see: (a) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K.
Chem. Rev. 2013, 113, 4905. (b) Agalave, S. G.; Maujan, S. R.; Pore, V.
S. Chem.Asian J. 2011, 6, 2696.
(2) (a) Duan, H.; Sengupta, S.; Petersen, J. L.; Akhmedov, N. G.; Shi,
X. J. Am. Chem. Soc. 2009, 131, 12100. (b) Ye, X.; He, Z.; Ahmed, T.;
Weise, K.; Akhmedov, N. G.; Petersen, J. L.; Shi, X. Chem. Sci. 2013, 4,
3712. (c) Gu, Q.; Al Mamari, H. H.; Graczyk, K.; Diers, E.;
Ackermann, L. Angew. Chem., Int. Ed. 2014, 53, 3868.
(3) For reviews, see: (a) Gulevich, A. V.; Gevorgyan, V. Angew.
Chem., Int. Ed. 2013, 52, 1371. (b) Chattopadhyay, B.; Gevorgyan, V.
Angew. Chem., Int. Ed. 2012, 51, 862.
(4) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596. (b) Tornøe, C. W.; Christensen,
C.; Medal, M. J. Org. Chem. 2002, 67, 3057.
(5) (a) Liang, L.; Astruc, D. Coord. Chem. Rev. 2011, 255, 2933.
(b) Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302.
(c) Mamidyala, S. K.; Finn, M. G. Chem. Soc. Rev. 2010, 39, 1252.
(d) Jewett, J. C.; Bertozzi, C. R. Chem. Soc. Rev. 2010, 39, 1272.
(e) Medal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952.
(6) (a) Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams, I. D.;
Sharpless, K. B.; Fokin, V. V.; Jia, G. J. Am. Chem. Soc. 2005, 127,
15998. (b) Boren, B. C.; Narayan, S.; Rasmussen, L. K.; Zhang, L.;
Zhao, H.; Lin, Z.; Jia, G.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130,
8923.
(7) (a) Ding, S.; Jia, G.; Sun, J. Angew. Chem., Int. Ed. 2014, 53, 1877.
(8) (a) Worrell, B. T.; Ellery, S. P.; Fokin, V. V. Angew. Chem., Int. Ed.
2013, 52, 13037. (b) Spiteri, C.; Moses, J. E. Angew. Chem., Int. Ed.
D
Org. Lett. XXXX, XXX, XXX−XXX