3
then extruded from I to generate the iminium intermediate II.
Mannich-type addition of the nucleophile, herein the second
equivalent of aniline at the para-position, to II affords the
desired product 5. The N-H insertion step is sensitive to steric
hindrance of the aniline. When ortho-substituted anilines were
used, the formation of desired products was not observed and
only aniline starting materials were recovered. The regio-
selectivity of the Mannich-type nucleophilic addition of anilines
to the iminium intermediate II is somewhat surprising. Only the
para-position of the second equivalent aniline could react to form
the product 5, and the ortho-addition product 6 was not observed
in all cases. The regio-chemistry of the products (5a–5j) was
confirmed by 2D-NMR and NOE studies (supporting
information). The para-substituted anilines failed to afford any
desired product 5 because the Mannich-type reaction was
blocked by the para-substitutions. The reactions were either
messy or some undesired side-products were formed. Further
mechanistic studies were ongoing to understand the regio-
selectivity of the desired products 5 and also the reaction
pathways towards the side-products from the para-substituted
anilines.
References and notes
1. For reviews: (a) Davies, H. M. L.; Beckwith, R. E. J. Chem.
Rev. 2003, 103, 2861; (b) Zhou, S. F.; Zhou, Q. L. Accounts of
Chemical Research 2012, 45, 1365; (c) Zhao, X.; Zhang, Y.;
Wang, J. Chem. Commun. 2012, 48, 10162; (d) Davies, H. M.
L.; Morton, D. Chemical Society Reviews 2011, 40, 1857; (e)
France, S.; Phun, L. H. Current Organic Synthesis 2010, 7, 332;
(f) Slattery, C. N.; Ford, A.; Maguire, A. R. Tetrahedron 2010,
66, 6681; (g) Davies, H. M. L.; Denton, J. R. Chemical Society
Reviews 2009, 38, 3061; (h) Padwa, A. Chemical Society
Reviews 2009, 38, 3072; (i) Zhang, Y.; Wang, J. Chem.
Commun. 2009, 5350; (k) Zhang, Z.; Wang, J. Tetrahedron
2008, 64, 6577; (l) Moody, C. J. Angew. Chem. Int. Ed. 2007,
46, 9148.
2. For examples: (a) Xu, X.; Zavalij, P. Y.; Doyle, M. P. Angew.
Chem. Int. Ed. 2012, 51, 9829; (b) McMills, M. C.; Humes, R.
J.; Pavlyuk, O. M. Tetrahedron Letters 2012, 53, 849; (c)
Osako, T.; Panichakul, D.; Uozumi, Y. Org. Lett. 2012, 14, 194;
(d) Zhu, S. F.; Xu, B.; Wang, G.-P.; Zhou, Q. L. J. Am. Chem.
Soc. 2012, 134, 436; (e) Xu, B.; Zhu, S.-F.; Xie, X.-L.; Shen,
J.-J.; Zhou, Q.-L. Angew. Chem. Int. Ed. 2011, 50, 11483; (f)
Zhu, S. F.; Song, X.-G.; Li, Y.; Cai, Y.; Zhou, Q.-L. J. Am.
Chem. Soc. 2010, 132, 16374; (g) Denton, J. R.; Davies, H. M.
L. Org. Lett. 2009, 11, 787; (h) Zhou, C.-Y.; Wang, J. C.; Wei,
J.; Xu, Z.-J.; Guo, Z.; Low, K.-H.; Che, C.-M. Angew. Chem.
Int. Ed. 2012, 51, 11376.
3. For recent reviews on organocatalysis: (a) Connon, S. J. Chem.
Commun. 2008, 2499; (b) Connon, S. J. Synlett 2009, 354; (c)
Melchiorre, P. Angew. Chem. Int. Ed. 2012, 51(39), 9748; (d)
Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Noto, R. Chem.
Soc. Rev. 2012, 41, 2406.
4. So, S. S.; Mattson, A. E. J. Am. Chem. Soc. 2012, 134, 8798.
5. So, S. S.; Auvil, T. J.; Garza, V. J.; Mattson, A. E. Org. Lett.
2012, 14, 444.
6. An enantioselective organocatalytic N-H insertion: Saito, H.;
Morita, D.; Uchiyama, T.; Miyake, M.; Miyairi, S. Tetrahedron
letters 2012, 53, 6662.
7. For examples of carbene generation from α-nitro-α-diazo
carbonyl compounds, see: (a) Shollkopf, U.; Tonne, P. Leibigs
Ann. Chem. 1971, 753, 135; (b) O’Bannon, P. E.; Dailey, W. P.
Tetrahedron Lett. 1988, 29, 5719; (c) O’Bannon, P. E.; Dailey,
W. P. J. Org. Chem. 1989, 54, 3096; (d) Charette, A. B.; Wurz,
R. P.; Ollevier, T. Helv. Chim. Acta 2002, 85, 4468; (e) Wurz,
R. P.; Charette, A. B. J. Org. Chem. 2004, 69, 1262; (f) Zhu, S.;
Perman, J. A.; Zhange, X. P. Angew. Chem., Int. Ed. 2008, 47,
8460; (g) Lindsay, V. N.; Lin, W.; Charette, A. B. J. Am. Chem.
Soc. 2009, 131, 16383; (h) Vanier, S. F.; Larouche, G.; Wurz, R.
P.; Charette, A. B. Org. Lett. 2010, 12, 672.
Scheme 2. Proposed N-H insertion/Mannich-type reaction cascade
In summary, for the first time,
a catalyst-free N-H
insertion/Mannich-type cascade reaction of ꢀ-nitrodiazoesters
with anilines has been developed to afford a variety of ꢀ-amino-
ꢀ-aryl esters in good yields and under mild reaction conditions
(23°C or 40°C). The protic solvent, methanol, was proved to be
critical for the reaction to provide high yields of products. The
reaction cascade worked well with meta-substituted anilines as
substrates. Further investigations are ongoing to expand the
substrate scope to sterically hindered ortho-substituted anilines.
In addition, a three component coupling reaction based on the
methodology is being developed to further extend its utility.
8.
(a) Bernardi L.; Fochi, M.; Franchini, M. C.; Ricci, A. Org.
Biomol. Chem. 2012, 10, 2911; (b) Knowles, R. R.; Jacobsen, E.
N. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20678; (c) Aleman,
J.; Parra, A.; Jiang, H.; Jorgensen, K. A. Chem. Eur. J. 2011, 17,
6890; (d) Gellmann, S. H. Chem. Rev. 1997, 97(5), special
issue on molecular recognition.
Acknowledgments
9. Results will be published elsewhere.
We thank Mr. Morris Sui for NMR analysis and Dr. Ruina
Gao for HRMS analysis. We are grateful for the financial support
of the Forum for Innovative Research and Scientific Talents
Award, GlaxoSmithKline.
10. A similar structure was used as organocatalysis: Suez, G.;
Bloch, V.; Nisnevich, G.; Gandelman, M. Eur. J. Org. Chem.
2012, 2118.
11. Aller, E.; Buck, R. T.; Drysdale, M. J.; Ferris, L.; Haigh, D.;
Moody, C. J.; Pearson, N. D.; Sanghera, J. B. J. Chem. Soc.,
Perkin Trans. I. 1996, 2879.
12. Hansen, S. R.; Spangler, J. E.; Hansen, J. H.; Davies, H. M. L.
Org. Lett. 2012, 14, 4626.
Supplementary Material
Supplementary data (detailed experimental for all compounds
Click here to remove instruction text...
1
including procedures, H NMRs, 13C NMRs, HRMSs and nOe
characterizations) associated with this article can be found, in the
online version, at XXXXXX.