Journal of the American Chemical Society
Article
(22) Lambert, C.; Noll, G.; Schelter, J. Nat. Mater. 2002, 1, 69.
(23) Lambert, C.; Amthor, S.; Schelter, J. J. Phys. Chem. A 2004, 108,
6474.
̈
AUTHOR INFORMATION
■
Corresponding Author
(24) Odom, S. A.; Lancaster, K.; Beverina, L.; Lefler, K. M.;
Thompson, N. J.; Coropceanu, V.; Bred
S. Chem.Eur. J. 2007, 13, 9637.
(25) Barlow, S.; Risko, C.; Chung, S.-J.; Tucker, N. M.; Coropceanu,
V.; Jones, S. C.; Levi, Z.; Bredas, J. L.; Marder, S. R. J. Am. Chem. Soc.
2005, 127, 16900.
(26) Lancaster, K.; Odom, S. A.; Jones, S. C.; Thayumanavan, S.;
Marder, S. R.; Bredas, J. L.; Coropceanu, V.; Barlow, S. J. Am. Chem.
́
as, J.-L.; Marder, S. R.; Barlow,
Notes
The authors declare no competing financial interest.
́
ACKNOWLEDGMENTS
■
This work was supported by the National Science Foundation,
through the Science and Technology Center Program (Grant
DMR-0120967) and a Graduate Research Fellowship to S.A.O.,
and by the Office of Naval Research, through the DARPA
MORPH Program (Grant N-00014-06-1-0897). Part of the
computational resources have been provided by Georgia Tech's
Center for Computational Molecular Science and Technology,
which is funded through a NSF CRIF award (Grant No. CHE-
0946869) and by the Georgia Institute of Technology. We also
thank S. Thaymanavan and Michael D. Levin for the syntheses
of 1−3 and John R. Reynolds for a gift of an intermediate used
to obtain 10.
́
Soc. 2009, 131, 1717.
(27) Kaim, W. Inorg. Chem. 2011, 50, 9752 and references therein..
(28) Roussel, P.; Cary, D. R.; Barlow, S.; Green, J. C.; Varret, F.;
O’Hare, D. Organometallics 2000, 19, 1071.
(29) Pond, S. J. K.; Rumi, M.; Levin, M. D.; Parker, T. C.; Beljonne,
D.; Day, M. W.; Bredas, J. L.; Marder, S. R.; Perry, J. W. J. Phys. Chem.
A 2002, 106, 11470.
(30) Frederiksen, P. K.; Jørgensen, M.; Ogilby, P. R. J. Am. Chem. Soc.
2001, 123, 1215.
(31) Kauffman, J. M.; Moyna, G. J. Org. Chem. 2003, 68, 839.
(32) Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow, S.;
Hu, Z.; McCord-Maughon, D.; Parker, T. C.; Rockel, H.;
̈
Thayumanavan, S.; Marder, S. R.; Beljonne, D.; Bred
Chem. Soc. 2000, 122, 9500.
́
as, J.-L. J. Am.
REFERENCES
■
(1) Hankache, J.; Wenger, O. S. Chem. Rev. 2011, 111, 5138.
(2) Heckmann, A.; Lambert, C. Angew. Chem., Int. Ed. 2012, 51, 326.
(3) Hush, N. S. Prog. Inorg. Chem. 1967, 8, 391.
(4) Nelsen, S. F.; Tran, H. Q.; Nagy, M. A. J. Am. Chem. Soc. 1998,
120, 298.
(5) Tang, C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
(6) Kido, J.; Kimura, M.; Nagai, K. Science 1995, 267, 1332.
(7) Bulovic, V.; Gu, G.; Burrows, P. E.; Forrest, S. R.; Thompson, M.
E. Nature 1996, 380, 29.
(33) Zheng, S.; Barlow, S.; Risko, C.; Kinnibrugh, T. L.; Khrustalev,
V. N.; Antipin, M. Y.; Tucker, N. M.; Timofeeva, T.; Coropceanu, V.;
Jones, S. C.; Bred
1812.
́
as, J.-L.; Marder, S. R. J. Am. Chem. Soc. 2006, 128,
(34) Zheng, S.; Beverina, L.; Barlow, S.; Zojer, E.; Fu, J.; Padilha, L.
A.; Fink, C.; Kwon, O.; Yi, Y.; Shuai, Z.; Van Stryland, E. W.; Hagan,
D. J.; Bred
(35) Kwon, O.; Barlow, S.; Odom, S. A.; Beverina, L.; Thompson, N.
J.; Zojer, E.; Bredas, J.-L.; Marder, S. R. J. Phys. Chem. A 2005, 109,
9346.
́
as, J.-L.; Marder, S. R. Chem. Commun. 2007, 1372.
́
(8) Borsenberger, P. M.; Weiss, D. S. Organic Photoreceptors for
Xerography; Marcel Dekker: New York, 1998.
(36) The ionization energies of pyrrole and thiophene are 8.9 and 8.2
eV, respectively (Sell, J. A.; Kuppermann, A. Chem. Phys. Lett. 1978,
61, 355), although a smaller difference might be expected between
pyrrole and dialkoxythiophene. We have previously noted that
alkylpyrrole derivatives are more readily oxidized than their
dialkoxythiophene analogues (see ref 34 and Zheng, S.; Leclercq, A.;
Fu, J.; Beverina, L.; Padilha, L. A.; Zojer, E.; Schmidt, K.; Barlow, S.;
Luo, J.; Jiang, S.-H.; Jen, A. K.-Y.; Yi, Y.; Shuai, Z.; Van Stryland, E. W.;
(9) Littleford, R. E.; Paterson, M. A. J.; Low, P. J.; Tackley, D. R.;
Jayes, L.; Dent, G.; Cherryman, J. C.; Brown, B.; Smith, W. E. Phys.
Chem. Chem. Phys. 2004, 6, 3257.
(10) Low, P. J.; Paterson, M. A. J.; Puschmann, H.; Goeta, A. E.;
Howard, J. A. K.; Lambert, C.; Cherryman, J. C.; Tackley, D. R.;
Leeming, S.; Brown, B. Chem.Eur. J. 2004, 10, 83.
(11) Spangler, C. W. J. Mater. Chem. 1999, 9, 2013.
(12) Huang, C.; Sartin, M. M.; Siegel, N.; Cozzuol, M.; Zhang, Y.;
Hales, J. M.; Barlow, S.; Perry, J. W.; Marder, S. R. J. Mater. Chem.
2011, 21, 16119.
́
Hagan, D. J.; Bredas, J.-L.; Marder, S. R. Chem. Mater. 2007, 19, 432).
(37) Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877.
(38) Sutton, J. E.; Taube, H. Inorg. Chem. 1981, 20, 3125.
(39) Ribou, A. C.; Launay, J.-P.; Sachtleben, M. L.; Li, H.; Spangler,
C. W. Inorg. Chem. 1996, 35, 3735.
(13) Wolfe, J. P.; Wagaw, S.; Buchwald, S. L. J. Am. Chem. Soc. 1996,
118, 7215.
(14) Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 7217.
(15) Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy,
D. W.; Adams, R. N. J. Am. Chem. Soc. 1966, 88, 3498.
(16) Dapperheld, S.; Steckhan, E.; Grosse-Brinkhaus, K.-H.; Esch, T.
Chem. Ber. 1991, 124, 2557.
(40) Robin, M. B.; Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10,
247.
(41) Coropceanu, V.; Malagoli, M.; Andre,
Chem. Soc. 2002, 124, 10519.
(42) Coropceanu, V.; Malagoli, M.; Andre,
Chem. Phys. 2001, 115, 10409.
́
J. M.; Bred
́
as, J. L. J. Am.
́
J. M.; Bred
́
as, J. L. J.
(17) Brunschwig, B. S.; Creutz, C.; Sutin, N. Chem. Soc. Rev. 2002,
31, 168.
(43) For examples of other work recognizing the importance of
symmetric modes in the IVCT line shapes of delocalized and nearly
delocalized MV systems, see: Reimers, J. R.; Hush, N. S. Chem. Phys.
1996, 208, 177. Piepho, S. B. J. Am. Chem. Soc. 1988, 110, 6319.
Borras-Almenara, J. J.; Coronado, E.; Ostrovsky, S. M.; Palii, A. V.;
́
Tsukerblat, B. S. Chem. Phys. 1999, 240, 149. Bailey, S. E.; Zink, J. I.;
Nelsen, S. F. J. Am. Chem. Soc. 2003, 125, 5939.
(18) Lambert, C.; Noll, G. J. Am. Chem. Soc. 1999, 121, 8434.
(19) Szeghalmi, A. V.; Erdmann, M.; Engel, V.; Schmitt, M.; Amthor,
̈
S.; Kriegisch, V.; Noll, G.; Stahl, R.; Lambert, C.; Leusser, D.; Stalke,
̈
D.; Zabel, M.; Popp, J. J. Am. Chem. Soc. 2004, 126, 7834.
(20) Coropceanu, V.; Gruhn, N. E.; Barlow, S.; Lambert, C.;
́
Durivage, J. C.; Bill, T. G.; Noll, G.; Marder, S. R.; Bredas, J.-L. J. Am.
̈
Chem. Soc. 2004, 126, 2727.
(44) We have previously observed that the IVCT of a delocalized
bis(diarylamino)dithienopyrrole radical cation shows a band shape
rather different from those of analogues with bithiophene or
dithienothiophene bridges (ref 24).
(45) Optimization of the structures of mixed-valence species typically
gives highly methodology-dependent results; electron self-interaction
errors in DFT methods tend to afford delocalized structures for open-
shell systems, while the neglect of electron correlation effects in
(21) Other features of bridging groups besides their local orbital
energies can play a role in determining electronic coupling. For
example, the radical cation of 9,10-bis[bis(4-methoxyphenyl)amino]
anthracene radical cation is less strongly coupled than its p-phenylene-
bridged analogue due to the disruption of oribital overlap through
steric effects: Lambert, C.; Risko, C.; Coropceanu, V.; Schelter, J.;
Amthor, S.; Gruhn, N. E.; Durivage, J. C.; Bred
́
as, J. L. J. Am. Chem.
Soc. 2005, 127, 8508.
10154
dx.doi.org/10.1021/ja3023048 | J. Am. Chem. Soc. 2012, 134, 10146−10155