10.1002/anie.201810798
Angewandte Chemie International Edition
This plan was tested by performing the photochemical β-
acylation of cinnamaldehyde 2a and Bz-DHP 1a catalyzed by the
fluorinated catalyst (S)-C. After completion of the radical addition
step, the aminocatalyst (S)-B (20 mol%) was added along with 1,1-
bis(phenylsulfonyl)ethylene 6 as a reactive Michael acceptor[22] and
cyclopentylmethylether (CPME) as the solvent (Scheme 2). This one-
pot procedure granted access to the 2,3-disubsitituted product 5 with
high enantioselectivity (95% ee) and good anti diastereoselectivity
(4.8:1 anti/syn). In consonance with our design plan, using the other
enantiomer of the enamine catalyst B while retaining the iminium
J. Am. Chem. Soc. 2008, 130, 14066; d) D. A. DiRocco, T. Rovis, J.
Am. Chem. Soc. 2011, 133, 10402; e) T. Jousseaume, N. E. Wurz, F.
Glorius, Angew. Chem. Int. Ed. 2011, 50, 1410; Angew.
Chem. 2011, 123, 1446. For a review: f) D. Enders, T. Balensiefer,
Acc. Chem. Res. 2004, 37, 534.
[8] M. R. Nahm, J. R. Potnick, P. S. White, J. S. Johnson, J. Am. Chem.
Soc. 2006, 128, 2751.
[9] For acyl radical properties, reactivity, and classical methodologies for
their generation, see: C. Chatgilialoglu, D. Crich, M. Komatsu, I. Ryu,
Chem. Rev. 1999, 99, 1991.
[10] For examples of non-stereocontrolled acyl radical addition to electron-
poor olefins, see: a) R. Scheffold, R. Orlinski, J. Am. Chem. Soc.,
1983, 105, 7200; b) S. Esposti, D. Dondi, M. Fagnoni, A. Albini,
Angew. Chem. Int. Ed. 2007, 46, 2531; Angew. Chem. 2006, 119,
2583; c) G. Bergonzini, C. Cassani, C.-J. Wallentin, Angew. Chem.
Int. Ed. 2015, 54, 14066; Angew. Chem. 2006, 127, 1437; d) G.-Z.
Wang, R. Shang, W.-M. Cheng, Y. Fu, Org. Lett. 2015, 17, 4830; e)
L. Capaldo, R. Riccardi, D. Ravelli, M. Fagnoni, ACS Catal. 2018, 8,
304.
specific catalyst
C isomer resulted in complete reversal of
diastereocontrol to provide the syn adduct 5 without loss in reaction
efficiency or enantioselectivity (51 yield, 97% ee, 3:1 syn/anti).
In summary, we have demonstrated that easily accessible 4-acyl-
1,4-dihydropyridines can generate acyl radicals upon irradiation with
visible light. The mild reaction conditions of this photochemical
radical-generating strategy were used to develop the first reported
example of enantioselective catalytic acyl radical conjugate addition.
This iminium-ion-mediated process affords valuable enantioenriched
acyclic 1,4-dicarbonyl compounds and can be used for the
stereoselective synthesis of a biologically relevant molecule. We also
demonstrated that, by combining this acylation process with a second
catalyst-controlled bond-forming event, it is possible to selectively
access 2,3-substituted 1,4-dicarbonyl products using a one-pot
procedure, and that both stereoisomers can become available by
judicious catalyst selection. Efforts are ongoing to expand the
synthetic potential of this asymmetric acyl radical addition strategy
and fully elucidate the reaction mechanism.[15]
[11] M. Silvi, P. Melchiorre, Nature 2018, 554, 4.
[12] D. W. C. MacMillan, Nature, 2008, 455, 304.
[13] L. Buzzetti, A. Prieto, S. Raha Roy, P. Melchiorre, Angew. Chem. Int.
Ed. 2017, 56, 15039; Angew. Chem. 2017, 129, 15235.
[14] P. J. Krusic, T. A. Rettig, J. Am. Chem. Soc. 1970, 92, 722.
[15] Irradiance at 460 nm secured the selective excitation of the acyl-DHP
substrate 1. The resulting acyl radical is then stereoselectively
intercepted by the ground-state electrophilic chiral iminium ion. The
excitation of the transiently generated chiral iminium ion cannot be
operative under these conditions, since this intermediate cannot absorb
wavelengths longer than 430 nm, see: a) M. Silvi, C. Verrier, Y. P.
Rey, L. Buzzetti, P. Melchiorre, Nat. Chem. 2017 9, 868; b) C.
Verrier, N. Alandini, C. Pezzetta, M. Moliterno, L. Buzzetti, H. B.
Hepburn, A. Vega-Peñaloza, M. Silvi, P. Melchiorre, ACS Catal.
2018, 8, 1062; c) D. Mazzarella, G. E. M. Crisenza, P. Melchiorre, J.
Am. Chem. Soc. 2018, 140, 8439.
[16] a) G. Lelais, D. W. C. MacMillan, Aldrichimica Acta 2006, 39, 79; b)
K. L. Jensen, G. Dickmeiss, H. Jiang, Ł. Albrecht, K. A. Jørgensen,
Acc. Chem. Res. 2012, 45, 248.
[17] a) S. Lakhdar, A. R. Ofial, H. Mayr, J. Phys. Org. Chem. 2010, 23,
886; b) S. Lakhdar, J. Ammer, H. Mayr, Angew. Chem. Int.
Ed. 2011, 50, 9953; Angew. Chem. 2011, 123, 10127; c) S. Lakhdar,
T. Tokuyasu, H. Mayr, Angew. Chem. Int. Ed. 2008, 47, 8723; Angew.
Chem. 2008, 120, 8851.
[18] G. Lamoureux, G. Artavia, Curr. Med. Chem. 2010, 17, 2967.
[19] Crystallographic data for compound 3a has been deposited with the
Cambridge Crystallographic Data Centre, accession number CCDC
1867805.
[20] T. D. Kohlman, Y.-C Xu, A. G. Godfrey, J. C. O'Toole, T. Y. Zhang,
1999, EP 924205-A1-19990623.
[21] For the use of cyclic specific catalysts in organocatalytic cascade
processes, see: a) B. Simmons, A. M. Walji, D. W. C. MacMillan,
Angew. Chem. Int. Ed. 2009, 48, 4349; Angew. Chem. 2009, 121,
4413; b) Y. Huang, A. M. Walji, C. H. Larsen, D. W. C. MacMillan,
J. Am. Chem. Soc. 2005, 127, 15051.
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
Keywords: organocatalysis • Stetter reaction • acyl radicals •
photochemistry • stereodivergence
[1] a) C. Paal, Ber. Dtsch. Chem. Ges. 1884, 17, 2756; b) L. Knorr, Ber.
Dtsch. Chem. Ges. 1884, 17, 2863.
[2] a) M. Whittaker, C. D. Floyd, P. Brown, A. J. H. Gearing, Chem. Rev.
1999, 99, 2735; b) M. P. DeMartino, K. Chen, P. S. Baran, J. Am.
Chem. Soc. 2008, 130, 11546 and references therein; c) A. V. Gavai et
al., ACS Med. Chem. Lett. 2015, 6, 523.
[3] a) D. Kaldre, I. Klose, N. Maulide, Science 2018, 361, 664; b) E. E.
Robinson, R. J. Thomson, J. Am. Chem. Soc. 2018, 140, 1956; c) P. S.
Baran, M. P. DeMartino, Angew. Chem. Int. Ed. 2006, 45, 7083;
Angew. Chem. 2006, 118, 7241; d) N. Kise, K. Tokioka, Y. Aoyama,
Y. Matsumura, J. Org. Chem. 1996, 60, 1100.
[4] a) S. Huang, L. Kötzner, C. K. De, B. List, J. Am. Chem. Soc. 2015,
137, 3446; b) H.-Y. Jang, J.-B. Hong, D. W. C. MacMilllan, J. Am.
Chem. Soc., 2007, 129, 7004.
[5] H. Stetter, M. Schreckenberg, Angew. Chem. Int. Ed. Engl. 1973, 12,
81; Angew. Chem. 1973, 85, 89.
[6] D. Seebach, Angew. Chem. Int. Ed. Engl. 1979, 18, 239; Angew.
Chem. 1979, 91, 259.
[7] a) D. Enders, J. Han, A. Henseler, Chem. Commun. 2008, 3989; b) D.
Enders, J. Han, Synthesis 2008, 3864; c) Q. Liu, S. Perreault, T. Rovis,
[22] S. Sulzer-Mossé, A. Alexakis, J. Mareda, G. Bollot, G. Bernardinelli,
Y. Filinchuk, Chem. Eur. J. 2009, 15, 3204.
4
This article is protected by copyright. All rights reserved.