Page 5 of 7
Journal of the American Chemical Society
these studies and those outlined in our optimization (Table
C. M. The utilization of spirocyclic scaffolds in novel drug
discovery. Expert Opin. Drug Discov. 2016, 11, 831-834.
(c) Johansson, L.; Anders, M. Azetidine derivatives for
treatment of melanin related disorders. Patent WO
2013/011285 A1, 2013. (d) Chen, H.; Colletti, S. L.; De-
mong, D.; Guo, Y.; Miller, M.; Nair, A.; Plummer, C.;
Xiao, D.; Yang, D.-Y. Antidiabetic bicyclic compounds.
Patent WO 2016/022742 A1, 2016.
1
2
3
4
5
6
7
8
1), we propose a tentative mechanism for the reaction
which begins with visible-light excitation of Ir(dMeppy)3
to Ir(dMeppy)3* (Figure 3c). Single-electron reduction of
the iminium ion (Int-I) by Ir(dMeppy)3* forms the a-amino
radical (Int-II), which engages the pendant alkene in a 5-
exo-trig cyclization to form an alkyl radical (Int-III); HAT
from 1,4-CHD to the alkyl radical then forms N-heterospi-
rocycle 3. The oxidized Ir(IV)(dMeppy)3 species is re-
duced to the active catalyst by single-electron transfer from
the Hantzsch ester, closing the catalytic cycle.
(5) (a) Carreira, E. M.; Fessard, C. T. Four-membered ring-
containing spirocycles: synthetic strategies and opportuni-
ties. Chem. Rev. 2014, 114, 8257-8322. (b) Rios, R. Enan-
tioselective methodologies for the synthesis of spiro com-
pounds. Chem. Soc. Rev. 2012, 41, 1060-1074. (c) Singh,
F. V.; Kole, P. B.; Mangaonkar, S. R.; Shetgaonkar, S. E.
Synthesis of spirocyclic scaffolds using hypervalent iodine
reagents. Belstein J. Org. Chem. 2018, 14, 1778-1805. (d)
Melnykov, K. P.; Artemenko, A. N.; Ivanenko, B. O.;
Sokolenko, Y. M.; Nosik, P. S.; Ostapchuk, E. N.;
Grygorenko, O. O.; Volochnyuk, D. M.; Ryabukhin. S. V.
Scalable synthesis of biologically relevant spirocyclic pyr-
rolidines. ACS Omega 2019, 4, 7498–7515.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
In summary, we have developed a visible-light mediated
process to enable the facile synthesis of heterospirocyclic
compounds from readily available starting materials. The
photoredox strategy offers an intuitive retrosynthetic dis-
connection for difficult-to-access C(sp3)-rich N-heterospi-
rocyclic scaffolds that may be of interest to practitioners of
both synthetic and medicinal chemistry.
ASSOCIATED CONTENT
The Supporting Information is available free of charge on the
ACS Publications website. Experimental procedures and spec-
tral data (PDF); crystallographic data (CIF)
(6) (a) Rousseaux, S.; Garcia-Fortanet, J.; Angel Del
Aguila Sanchez, M.; Buchwald, S. L. J. Am. Chem. Soc.
2011, 133, 9282-9285. (b) Zhu, M.; Zheng, C.; Zhang, X.;
You, S-L. Synthesis of cyclobutane-fused angular tetracy-
clic spiroindolines via visible-light-promoted intramolecu-
lar dearomatization of indole derivatives. J. Am. Chem.
Soc. 2019, 141, 2636-2644. (c) Adams, K.; Ball, A. K.;
Birkett, J.; Brown, L.; Chappell, B.; Gill, D. M.; Tony Lo,
P. K.; Patmore, N. P.; Rice, C. R.; Ryan. J.; Raubo, P.;
Sweeney, J. B. An iron-catalysed C-C bond forming spiro-
cyclization cascade providing sustainable access to new
3D heterocyclic frameworks. Nat. Chem. 2017, 9,
396-401. (d) Siau, W.-Y.; Bode, J. W. One-step synthesis
of saturated spirocyclic N‑heterocycles with stannyl amine
protocol (SnAP) reagents and ketones. J. Am. Chem. Soc.
2014, 51, 17726-17729. (e) Saito, F.; Trapp, N.; Bode, J.
W. Iterative assembly of polycyclic saturated heterocycles
from monomeric building blocks. J. Am. Chem. Soc. 2019,
141, 5544-5554.
AUTHOR INFORMATION
Corresponding Author
*mjg32@cam.ac.uk
ACKNOWLEDGMENT
We are grateful to the Gates Cambridge Trust (N. J. F.) and
Herschel Smith Scholarship Scheme (A. T.) for student-
ships, the EPSRC (EP/S020292/1 & EP/N031792/1), Am-
bitious Leader's Program, Hokkaido University, Japan (J.
K.) and the Royal Society for a Wolfson Merit Award
(M.J.G.). S. M. W. is a Fellow of the AstraZeneca Postdoc-
toral program. We are grateful to the EPSRC UK National
Mass Spectrometry Facility at Swansea University for
HRMS analysis.
REFERENCES
(7) Prier, C.; Rankic, D.; MacMillan, D. W. C. Visible light
photoredox catalysis with transition metal complexes: ap-
plications in organic synthesis. Chem. Rev. 2013, 113,
5322-5363.
(1) (a) Lovering, F.; Bikker, J.; Humblet, C. Escape from
flatland: increasing saturation as an approach to improving
clinical success. J. Med. Chem. 2009, 52, 6752-6756. (b)
Blakemore, D. C.; Castro, L.; Churcher, I.; Rees. D. C.;
Thomas, A. W.; Wilson, D. M.; Wood, A. Organic synthe-
sis provides opportunities to transform drug discovery.
Nat. Chem. 2018, 10, 383-394.
(8) For reviews, see: (a) Zou, Y.-Q.; Xiao, W.-J. Visible
light mediated a-amino C–H functionalization reactions,
Chapter 4, 93-128, 2018, Wiley-VCH. (b) Beatty, J. W.;
Stephenson, C. R. J. Amine functionalization via oxidative
photoredox catalysis: methodology development and com-
plex molecule synthesis. Acc. Chem. Res. 2015, 48, 1474
Acc. Chem. Res. 2015, 48, 1474-1484. (c) Nakajima, K.;
Miyake, Y.; Nishibayashi, Y. Synthetic utilization of a-
aminoalkyl radicals and related species in visible light pho-
toredox catalysis. Acc. Chem. Res. 2016, 49, 1946-1956.
For selected examples, see: (d) McNally, A.; Prier, C.;
MacMillan, D. W. C. Discovery of an a-amino arylation
reaction using the strategy of accelerated serendipity. Sci-
ence 2011, 334, 1114-1117. (e) McManus, J. B.; Onuska,
N. P. R.; Nicewicz, D. A. Generation and alkylation of a-
carbamyl radicals via organic photoredox catalysis. J. Am.
(2) Murray, C. W.; Rees, D. C. The rise of fragment-based
drug discovery. Nat. Chem. 2009, 1, 187-192.
(3) (a) Fang, Z.; Song, Y.; Zhan, P.; Zhang, Q.; Liu, X.
Conformational restriction: an effective tactic in ”follow-
on”-based drug discovery. Future Med. Chem. 2014, 6,
885-901. (b) Wipf, P.; Skoda, E. M.; Mann, A. The Prac-
tice Of Medicinal Chemistry. Chapter 11 – Conformational
Restriction And Steric Hindrance In Medicinal Chemistry.
(Academic Press, San Diego, 2015).
(4) (a) Zheng, Y.-J.; Tice, C. M.; Singh, S. B. The use of
spirocyclic scaffolds in drug discovery. Bioorg. Med.
Chem. Lett. 2014, 24, 3673-3682. (b) Zheng, Y.-J.; Tice,
ACS Paragon Plus Environment