December 2007
1753
Experimental
PPS-50 (21) as a brown oil.
General Melting points were determined by using a Yanagimoto hot-
PPS-50 (21): 1H-NMR (500 MHz, CDCl3) d: 8.06—8.07 (1H, m), 7.87—
stage melting point apparatus and are uncorrected. 1H-NMR spectra were 7.89 (1H, m), 7.78 (1H, d, Jꢂ6.84 Hz), 7.41—7.76 (2H, m), 7.34 (1H, dt,
recorded on a JEOL JNM-GX500 (500 MHz) spectrometer. Chemical shifts Jꢂ7.69, 1.71 Hz), 7.16 (1H, d, Jꢂ8.10 Hz), 2.44 (1H, d, Jꢂ6.84 Hz), 2.42
are expressed in parts per million relative to tetramethylsilane. Mass spectra (1H, d, Jꢂ6.84 Hz), 1.51—1.54 (2H, m), 1.17—1.26 (4H, m), 0.78 (3H, t,
were recorded on a JEOL JMS-DX303 spectrometer. For silica gel chro- Jꢂ7.27 Hz). HR-FAB-MS: (MꢃH)ꢃ Calcd for C19H20NOS, 310.1266.
matography, Silica Gel 60 (Cica-Reagent Co. Ltd.) was used.
Found 310.1292.
N-2ꢀ-Methylphenylphthalimide (PP-10: 10) mp 180—181 °C. 1H-
PPSS-50 (22): 1H-NMR (500 MHz, CDCl3) d: 7.96 (2H, dd, Jꢂ5.55,
NMR (500 MHz, CDCl3) d: 7.99 (2H, m), 7.83 (2H, m), 7.40 (2H, m), 7.35 2.99 Hz), 7.77 (2H, dd, Jꢂ5.55, 2.99 Hz), 7.42—7.46 (2H, m), 7.35 (1H, dt,
(1H, m), 7.23 (1H, d, Jꢂ5.9 Hz), 2.24 (3H, s). Anal. Calcd for C15H11NO2: Jꢂ7.69, 1.71 Hz), 7.13 (1H, dd, Jꢂ7.69, 1.71 Hz), 2.36 (3H, t, Jꢂ8.12 Hz),
C, 75.94; H, 4.67; N, 5.90. Found: C, 76.03; H, 4.72; N, 5.86.
1.49—1.54 (2H, m), 1.15—1.20 (4H, m), 0.77 (3H, t, Jꢂ7.27 Hz). HR-FAB-
1
N-2ꢀ-Ethylphenylphthalimide (PP-20: 11) mp 132—133 °C. H-NMR
(60 MHz, CDCl3) d: 7.62—8.10 (4H, m), 6.96—7.50 (4H, m), 2.52 (2H, q,
Jꢂ7.5 Hz), 1.18 (3H, t, Jꢂ7.5 Hz). Anal. Calcd for C16H13NO2: C, 76.48; H, (5CPPSS-50: 23) A mixture of 5CPP-50 (20) (150 mg, 0.46 mmol), 2,4-
MS: (MꢃH)ꢃ Calcd for C19H20NS2, 326.1037. Found 326.1063.
5-Chloro-N-2ꢀ-n-pentylphenyl-2,3-dihydroisoindole-1,3-dithione
5.21; N, 5.57. Found: C, 76.65; H, 5.26; N, 5.54.
bis-(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane 2,4-disulfide (Lawes-
N-2ꢀ-n-Propylphenylphthalimide (PP-30: 12) Ethyl triphenyl phos- son reagent, Aldrich Co. Ltd.) (404 mg, 1.00 mmol) in dehydrated toluene
phonium bromide (1229 mg, 3.31 mmol) in THF (25 ml) was treated with
1 eq BuLi (1.6 M n-hexane solution, 2.04 ml) under ice cooling (stirred for
20 min). Then, 2-nitrobenzaldehylde (500 mg) in THF (1 ml) was added in
(30 ml) was refluxed for 8 h. The reaction mixture was concentrated and the
residue was purified by silica gel column chromatography (AcOEt : n-
hexaneꢂ1 : 15 v/v) and recrystallized from n-hexane–AcOEt to afford
aliquots, and stirred for 1 h. The resulted mixture was washed with water 90.5 mg (55%) of 5CPPSS-50 (23) as brown powder. mp 90—91 °C. 1H-
and separated by silica gel chromatography (AcOEt : n-hexaneꢂ1 : 1.15 v/v) NMR (500 MHz, CDCl3) d: 7.91 (1H, d, Jꢂ1.71 Hz), 7.89 (1H, d,
to give 271 mg pale yellow oil (crude yield: 50%). The oil was dissolved in Jꢂ8.12 Hz), 7.71 (1H, dd, Jꢂ8.12, 1.71 Hz), 7.43—7.49 (2H, m), 7.36 (1H,
10 ml EtOH and hydrogenated in the presence of 10% Pd/C (20 mg) under dt, Jꢂ7.69, 1.71 Hz), 7.12 (1H, d, Jꢂ7.69 Hz), 2.35 (2H, t, Jꢂ7.85 Hz),
an H2 atmosphere for 2 h to give 2-n-propylaniline quantitatively. The ob- 1.49—1.55 (2H, m), 1.13—1.34 (4H, m), 0.79 (3H, t, Jꢂ7.27 Hz). Anal.
tained 2-n-propylaniline was mixed with phthalic anhydride (121 mg) and Calcd for C19H18ClNS2: C, 63.40; H, 5.04: N, 3.89. Found: C, 63.22; H,
heated at 160 °C to melt under an Ar atmosphere for 1 h. The resulted mix-
ture was separated by silica gel chromatography (AcOEt : n-hexaneꢂ1 : 5
5.21: N, 3.91.
Reporter Gene Assay21—23) Human embryonic kidney (HEK) 293 cells
v/v) to give PP-30 (376 mg, y: 92%). The total yield was 46%. mp 94— were cultured in Dulbecco’s modified Eagle’s medium containing 5% fetal
95 °C. 1H-NMR (500 MHz, CDCl3) d: 7.95—7.99 (2H, m), 7.78—7.83 (2H, bovine serum at 37 °C in a humidified atmosphere of 5% CO2 in air. Trans-
m), 7.42 (1H, dt, Jꢂ7.33, 1.22 Hz), 7.39 (1H, dd, Jꢂ7.79, 2.14 Hz), 7.33 fections were performed by the calcium phosphate coprecipitation method.
(1H, dt, Jꢂ7.33, 2.14 Hz), 7.17 (1H, dd, Jꢂ7.79, 1.22 Hz), 2.47 (2H, t,
Test compounds with or without 0.1 mM T0901317 (3) (purchased from Cay-
Jꢂ7.79 Hz), 1.57 (2H, tq, Jꢂ7.79, 7.32 Hz), 0.86 (3H, t, Jꢂ7.32 Hz). Anal. man Co. Ltd.), were added 8 h after the transfection, and luciferase and b-
Calcd for C17H15NO2: C, 76.96; H, 5.70; N, 5.28. Found: C, 77.03; H, 5.56; galactosidase activities were assayed using a luminometer and microplate
N, 5.37.
reader (Wallac 1420 Multilabel Couner, Peerkin Elmer Co. Ltd.). The exper-
N-2ꢀ-n-Butylphenylphthalimide (PP-40: 13) PP-40 (13) was prepared iment was repeated three times, and the normalized average values are pre-
in the same manner as described for the synthesis of PP-30 (12) in a total sented in this paper.
yield of 38%. mp 75—76 °C. 1H-NMR (500 MHz, CDCl3) d: 7.94—7.99
(2H, m), 7.78—7.83 (2H, m), 7.42 (1H, dt, Jꢂ1.22, 7.86 Hz), 7.39 (1H, dd,
Acknowledgment The work described in this paper was partially sup-
Jꢂ7.25, 2.44 Hz), 7.33 (1H, dt, Jꢂ2.44, 7.25 Hz), 7.17 (1H, dd, Jꢂ1.22, ported by Grants-in-Aid for Scientific Research from The Ministry of Edu-
7.86 Hz), 2.49 (2H, t, Jꢂ7.78 Hz), 1.52—1.56 (2H, m), 1.19—1.23 (2H, m), cation, Culture, Sports, Science and Technology, Japan, and the Japan Soci-
0.79—0.81 (3H, t, Jꢂ7.02 Hz). Anal. Calcd for C18H17NO2: C, 77.40; H, ety for the Promotion of Science.
6.13; N, 5.01. Found: C, 77.51; H, 6.53; N, 4.99.
N-2ꢀ-n-Pentylphenylphthalimide (PP-50: 14) PP-50 (14) was prepared References
in the same manner as described for the synthesis of PP-30 (12) in a total
yield of 52%. mp 77—78 °C. 1H-NMR (500 MHz, CDCl3) d: 7.95—7.99
(2H, m), 7.78—7.83 (2H, m), 7.42 (1H, dt, Jꢂ1.22, 7.94 Hz), 7.39 (1H, dd,
Jꢂ7.25, 2.44 Hz), 7.33 (1H, dt, Jꢂ2.44, 7.25 Hz), 7.17 (1H, dd, Jꢂ7.94,
1.22 Hz), 2.48 (2H, t, Jꢂ7.94 Hz), 1.51—1.56 (2H, m), 1.19—1.23 (4H, m),
0.79—0.81 (3H, t, Jꢂ7.02 Hz). Anal. Calcd for C19H19NO2: C, 77.79; H,
6.53; N, 4.77. Found: C, 77.70; H, 6.55; N, 4.88.
1) Chawla A., Pepa J. J., Evans R., Mangelsdorf D. J., Science, 294,
1866—1870 (2001).
2) Janowski B. A., Willy P. J., Devi T. R., Falck J. R., Mangelsdorf D. J.,
Nature (London), 383, 728—731 (1996).
3) Lehmann J. M., Kliewer S. A., Moore L. B., Smith-Oliver T. A., Blan-
chard D. E., Spencer T. A., Willson T. M., J. Biol. Chem., 272, 3137—
3140 (1997).
N-2ꢀ-n-Hexylphenylphthalimide (PP-70: 15) PP-70 (15) was prepared
in the same manner as described for the synthesis of PP-30 (12) in a total
yield of 48%. mp 40 °C. 1H-NMR (500 MHz, CDCl3) d: 7.94—7.99 (2H,
m), 7.78—7.83 (2H, m), 7.41 (1H, dt, Jꢂ1.22, 7.21 Hz), 7.39 (1H, dd,
Jꢂ8.02, 2.14 Hz), 7.32 (1H, dt, Jꢂ2.14, 7.21 Hz), 7.16 (1H, dd, Jꢂ8.02,
1.22 Hz), 2.48 (2H, t, Jꢂ7.94 Hz), 1.49—1.58 (2H, m), 1.10—1.27 (8H, m),
0.79 (3H, t, Jꢂ7.02 Hz). Anal. Calcd for C21H23NO2: C, 78.47; H, 7.21; N,
4.35. Found: C, 78.77; H, 7.27; N, 4.21.
5-Chloro-N-2ꢀ-n-pentylphenylphthalimide (5CPP-50: 20) 5CPP-50
(20) was prepared in the same manner as described for the synthesis of PP-
30 (12) in a total yield of 83%. mp 88—89 °C. 1H-NMR (500 MHz, CDCl3)
d: 7.94 (1H, d, Jꢂ1.30 Hz), 7.90 (1H, d, Jꢂ8.12 Hz), 7.77 (1H, dd, Jꢂ8.12,
1.30 Hz), 7.39—7.42 (2H, m), 7.32—7.35 (1H, m), 7.15 (1H, d, Jꢂ7.27 Hz),
2.46 (2H, t, Jꢂ7.27 Hz), 1.53—1.56 (2H, m), 1.21—1.23 (4H, m), 0.80 (3H,
t, Jꢂ7.27 Hz). Anal. Calcd for C19H18ClNO2: C, 69.62; H, 5.53: N, 4.27.
Found: C, 69.69; H, 5.32; N, 4.26.
4) Collins J. L., Fivush A. M., Watson M. A., Galardi C. M., Lewis M.
C., Moore L. B., Parks D. J., Wilson J. G., Tippin T. K., Binz J. G.,
Plunket K. D., Morgan D. G., Beaudet E. G., Whitney K. D., Kliewer
S. A., Willson T. M., J. Med. Chem., 45, 1963—1966 (2002).
5) Schults J. R., Tu H., Luk A., Repa J. J., Medina J. C., Li L., Schwend-
ner S., Wang S., Thoolen M., Mangelsdorf D. J., Lustig K. D., Shan B.,
Genes Develop., 14, 2831—2838 (2000).
6) Repa J. J., Turley S. D., Lobaccaro J. M. A., Medina J., Li L., Lustig
K., Shan B., Heyman R. A., Dietschy J. M., Mangelsdorf D. J.,
Science, 289, 1524—1529 (2000).
7) Peet D. J., Turley S. D., Ma W., Janowski B. A., Lobaccaro J. M. A.,
Hammer R. E., Mangelsdorf D. J., Cell, 93, 693—704 (1998).
8) Laffitte B. A., Chao L. C., Li J., Walczak R., Hummasti S., Joseph S.
B., Castrillo A., Wilpitz D. C., Mangelsdorf D. J., Collins J. L., Saez
E., Tontonoz P., Proc. Natl. Acad. Sci. U.S.A., 100, 5419—5424
(2003).
N-2ꢀ-n-Pentylphenyl-3-thioxo-2,3-dihydroisoindol-1-one (PPS-50: 21)
and N-2ꢀ-n-Pentylphenyl-2,3-dihydroisoindole-1,3-dithione (PPSS-50:
22) A mixture of PP-50 (14) (650 mg, 2.22 mmol), 2,4-bis-(4-methoxy-
phenyl)-1,3-dithia-2,4-diphosphetane 2,4-disulfide (Lawesson reagent,
9) Cao G., Liang Y., Broderick C. L., Oldham B. A., Beyer T. P., Schmidt
R. J., Zhang Y., Stayrook K. R., Suen C., Otto K. A., Miller A. R., Dai
J., Foxworthy P., Gao H., Ryan T. P., Jiang X. C., Burris T. P., Eacho P.
I., Etgen G. J., J. Biol. Chem., 278, 1131—1136 (2003).
Aldrich Co. Ltd.) (900 mg, 2.23 mmol) in dehydrated toluene (40 ml) was re- 10) Mitro N., Mak P. A., Vatgas L., Godio C., Hampton E., Molteni V.,
fluxed for 8 h. The reaction mixture was concentrated and the residue was Kreusch A., Saez E., Nature (London), 445, 219—223 (2007).
purified by silica gel column chromatography (AcOEt : n-hexaneꢂ1 : 10 to 11) Hashimoto Y., Curr. Med. Chem., 5, 163—178 (1998).
1 : 5 v/v) to afford 430 mg (y: 59%) of PPSS-50 (22) and 100 mg (y: 15%) of 12) Hashimoto Y., Bioorg. Med. Chem., 10, 461—479 (2002).