Angewandte
Chemie
[11] a) N. Kornblum, H. E. DeLaMare, J. Am. Chem. Soc. 1951, 73,
NH3 to afford the new dihydro-2H-pyrrole derivative 6
demonstrates that 1,4-diketones 5 are suitable precursors
for heterocyclic compounds.
880 – 881; b) S. J. Blanksby, G. B. Ellison, V. M. Bierbaum, S.
Kato, J. Am. Chem. Soc. 2002, 124, 3196 – 3197.
[12] CCDC-245445 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge via
bridge Crystallographic Data Centre, 12, Union Road, Cam-
bridge CB21EZ, UK; fax: (+ 44)1223-336-033; or deposit@
ccdc.cam.ac.uk).
Experimental Section
Typical procedure: Styrene (3; 2.0 equiv) and the respective 1,3-
dicarbonyl compound 1 (1 mmol, 1.0 equiv) were added to a stirred
suspension of CeCl3·7H2O (0.1 equiv) in iPrOH (0.65 mL/mmol 1).
After 4 h, more 3 (1.0 equiv) was added, and the reaction mixture was
stirred for a further 20 h at room temperature. All volatile materials
were removed under vacuum, and the residue was suspended in
CH2Cl2 (2 mL/mmol 1). Pyridine (5.0 equiv) and acetyl chloride
(6.0 equiv) were added at 08C, and the resulting mixture was stirred
for 16 h at room temperature. The reaction mixture was filtered
through SiO2 (petroleum ether/EtOAc 2:1) and subsequently purified
by silica-gel column chromatography (petroleum ether/EtOAc 5:1) to
give 1,4-diketones 5 as the major products.
Received: July 23, 2004
À
Keywords: dicarbonyl compounds · C C coupling · cerium ·
heterocycles · homogeneous catalysis
.
[1] For a selection of other new syntheses of 1,4-diketones, see:
a) M. Yuguchi, M. Tokuda, K. Orito, J. Org. Chem. 2004, 69,
908 – 914; b) R. Ballini, L. Barboni, G. Giarlo, J. Org. Chem.
2003, 68, 9173 – 9176; c) Y. Yamamoto, H. Maekawa, S. Goda, I.
Nishiguchi, Org. Lett. 2003, 5, 2755 – 2758; d) M. Yasuda, S.
Tsuji, Y. Shigeyoshi, A. Baba, J. Am. Chem. Soc. 2002, 124,
7440 – 7447.
[2] a) H. S. P. Rao, S. Jothilingam, J. Org. Chem. 2003, 68, 5392 –
5394; b) B. W. Greatrex, M. C. Kimber, D. K. Taylor, E. R. T.
Tiekink, J. Org. Chem. 2003, 68, 4239 – 4246; c) D. S. Mortensen,
A. L. Rodriguez, K. E. Carlson, J. Sun, B. S. Katzenellenbogen,
J. A. Katzenellenbogen, J. Med. Chem. 2001, 44, 3838 – 3848.
[3] a) G. Minetto, L. F. Raveglia, M. Taddei, Org. Lett. 2004, 6, 389 –
392; b) R. Dhawan, B. A. Arndtsen, J. Am. Chem. Soc. 2004, 126,
468 – 469; c) B. K. Banik, S. Samajdar, I. Banik, J. Org. Chem.
2004, 69, 213 – 216; d) R. U. Braun, K. Zeitler, T. J. J. Müller,
Org. Lett. 2001, 3, 3297 – 3300.
[4] Recent examples: a) M. A. Calter, C. Zhu, Org. Lett. 2002, 4,
205 – 208; b) M. A. Calter, C. Zhu, R. J. Lachicotte, Org. Lett.
2002, 4, 209 – 212; c) F. Stauffer, R. Neier, Org. Lett. 2000, 2,
3535 – 3537.
[5] D. Enders, T. Balensiefer, Acc. Chem. Res. 2004, 37, 534 – 541.
[6] A. B. Smith III, C. M. Adams, Acc. Chem. Res. 2004, 37, 365 –
377.
[7] a) J. Christoffers, T. Werner, Synlett 2002, 119 – 121; b) J.
Christoffers, T. Werner, S. Unger, W. Frey, Eur. J. Org. Chem.
2003, 425 – 431; c) J. Christoffers, T. Werner, W. Frey, A. Baro,
Chem. Eur. J. 2004, 10, 1042 – 1045.
[8] J. Christoffers, T. Werner, W. Frey, A. Baro, Eur. J. Org. Chem.
2003, 4879 – 4886.
[9] a) B. W. Greatrex, D. K. Taylor, E. R. T. Tiekink, J. Org. Chem.
2004, 69, 2580 – 2583; b) B. Greatrex, M. Jevric, M. C. Kimber,
S. J. Krivickas, D. K. Taylor, E. R. T. Tiekink, Synthesis 2003,
668 – 672; c) B. W. Greatrex, M. C. Kimber, D. K. Taylor, G.
Fallon, E. R. T. Tiekink, J. Org. Chem. 2002, 67, 5307 – 5314;
d) M. C. Kimber, D. K. Taylor, J. Org. Chem. 2002, 67, 3142 –
3144; e) T. D. Avery, G. Fallon, B. W. Greatrex, S. M. Pyke, D. K.
Taylor, E. R. T. Tiekink, J. Org. Chem. 2001, 66, 7955 – 7966.
[10] a) J. Yoshida, S. Nakatani, K. Sakaguchi, S. Isoe, J. Org. Chem.
1989, 54, 3383 – 3389; b) J.-Q. Yu, E. J. Corey, J. Am. Chem. Soc.
2003, 125, 3232 – 3233.
Angew. Chem. Int. Ed. 2004, 43, 6547 –6549
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
6549