product as a mixture of the E- and Z-isomers. This was dissolved
in a mixture of EtOH and THF (0.5 : 0.5 mL), and subjected to
hydrogenation for 16 h, under H2 (1 atm) over 10% Pd/C
(0.2 g). The Pd/C was removed by filtration through celite, and
the solution evaporated to dryness.
Notes and references
1 J. H. Rakotoson, N. Fabre, I. Jacquemond-Collet, S. Hannedouche,
I. Fouraste and C. Moulis, Planta Med., 1998, 64, 762.
2 I. Jacquemond-Collet, S. Hannedouche, N. Fabre, I. Fouraste and
C. Moulis, Phytochemistry, 1999, 51, 1167.
3 I. Jacquemond-Collet, J. M. Bessiere, S. Hannedouche, C. Bertrand,
I. Fouraste and C. Moulis, Phytochem. Anal., 2001, 12, 312.
4 I. Jacquemond-Collet, F. Benoit-Vical, Mustofa, A. Valentin, E. Stanislas,
M. Mallie and I. Fouraste, Planta Med., 2002, 68, 68.
ent-(+)-Angustureine, 1
5 W. B. Wang, S. M. Lu, P. Y. Yang, X. W. Han and Y. G. Zhou, J. Am.
Chem. Soc., 2003, 125, 10536.
6 The iodine additive can be replaced by a stoichiometric amount of chloro-
formate to give the N-protected quinoline. However, the level of enantios-
electivity was somewhat lower: S.-M. Lu, Y.-Q. Wang, X.-W. Han and Y.-
G. Zhou, Angew. Chem., Int. Ed., 2006, 45, 2260.
7 M. Rueping, A. R. Antonchick and T. Theissmann, Angew. Chem., Int.
Ed., 2006, 45, 3683.
8 N. T. Patil, H. Wu and Y. Yamamoto, J. Org. Chem., 2007, 72, 6577.
9 Y. Yamaoka, H. Miyabe and Y. Takemoto, J. Am. Chem. Soc., 2007, 129,
6686.
Purified by column chromatography as a colourless oil (27 mg,
44%). Rf = 0.40 (EtOAc–n-hexane, 1 : 100); [α]2D5 +7.5° (c = 0.4,
CHCl3), lit. −7.16 (c = 1.0, CHCl3, natural product);2,26
νmax/cm−1 2930, 2860, 950, 750; δH: 7.11 (1H, t, J = 7.6 Hz,
Ar-H), 6.99 (1H, d, J = 7.6 Hz, Ar-H), 6.60 (1H, t, J = 7.6 Hz,
Ar-H), 6.55 (1H, d, J = 7.6 Hz, Ar-H), 3.31–3.19 (1H, m, H-2),
2.95 (3H, s, NCH3), 2.91–2.74 (1H, m, H-4), 2.75–2.63 (1H, m,
H-4′), 1.97–1.86 (2H, m, H-3), 1.62 (1H, m, CH2), 1.46–1.26
(10H, m, CH2, and CH3); δC: 145.4, 128.6, 127.1, 121.9, 115.2,
110.4, 59.0, 38.0, 32.1, 31.2, 29.7, 25.8, 24.4, 23.6, 22.7; m/z
(HRMS-ESI) 217.1828 (M+, C15H23N requires 217.1830), 146
(100), 83 (60).
10 G. Satyanarayana, D. Pflästerer and G. Helmchen, Eur. J. Org. Chem.,
2011, 6877.
11 (a) M. Guino, P. H. Phua, J.-C. Caille and K. K. Hii, J. Org. Chem.,
2007, 72, 6290; (b) P. H. Phua, S. P. Mathew, A. J. P. White, J. G. de
Vries, D. G. Blackmond and K. K. Hii, Chem.–Eur. J., 2007, 13, 4602;
(c) P. H. Phua, J. G. de Vries and K. K. Hii, Adv. Synth. Catal., 2006,
348, 587; (d) P. H. Phua, J. G. de Vries and K. K. Hii, Adv. Synth. Catal.,
2005, 347, 1775; (e) K. Li, X. Cheng and K. K. Hii, Eur. J. Org. Chem.,
2004, 959; (f) K. Li and K. K. Hii, Chem. Commun., 2003, 1132.
12 J. A. Marshall, J. D. Trometer, B. E. Blough and T. D. Crute, J. Org.
Chem., 1988, 53, 4274.
13 B. ter Horst, B. L. Feringa and A. J. Minnaard, Chem. Commun., 2007, 489.
14 M. A. Blanchette, W. Choy, J. T. Davis, A. P. Essenfeld, S. Masamune,
W. R. Roush and T. Sakai, Tetrahedron Lett., 1984, 25, 2183.
15 F. Avemaria, S. Vanderheiden and S. Bräse, Tetrahedron, 2003, 59, 6785.
16 H. S. Kim, H. J. Gim, M. Yang, J.-H. Ryu and R. Jeon, Heterocycles,
2007, 71, 2131.
17 D. Ma, C. Xia, J. Jiang, J. Zhang and W. Tang, J. Org. Chem., 2002, 68,
442.
18 For example, see: K. M. Kasiotis, N. Fokialakis and S. A. Haroutounian,
Synthesis, 2006, 1791.
19 (a) D. B. Damon, R. W. Dugger, G. Magnus-Aryitey, R. B. Ruggeri, R.
T. Wester, M. Tu and Y. Abramov, Org. Process Res. Dev., 2006, 10, 464;
(b) D. B. Damon, R. W. Dugger, S. E. Hubbs, J. M. Scott and R.
W. Scott, Org. Process Res. Dev., 2006, 10, 472.
20 T. F. Buckley and H. Rapoport, J. Am. Chem. Soc., 1982, 104, 4446.
21 Without the Lewis acid the reaction yielded a mixture of products, includ-
ing the partially reduced tetrahydroquinolin-4-ol.
(−)-Galipeine, 2
Obtained as a colourless gum (27 mg, 32%) after column
chromatography, Rf = 0.28 (Et2O–pentane, 3 : 7); [α]2D5 −27° (c =
0.7, CHCl3), lit. −26.1 (c = 0.44, CHCl3, 96%);25 νmax/cm−1
3500, 2940, 2850, 1600, 1500, 1280; δH: 7.12 (1H, t, J = 8.0
Hz, Ar-H), 7.02 (1H, d, J = 7.2 Hz, Ar-H), 6.88–6.76 (2H, m,
Ar-H), 6.70 (1H, dd, J = 2.0, 8.2, Ar-H), 6.63 (1H, t, J = 7.2 Hz,
Ar-H), 6.57 (1H, d, J = 8.0 Hz, Ar-H), 5.61 (1H, br. s, OH),
3.91 (3H, s, OCH3), 3.39–3.23 (1H, m, H-2), 2.94 (3H, s,
NCH3), 2.92–2.82 (1H, m, H-4), 2.79–2.60 (2H, m, H-4 and
CH2), 2.60–2.46 (1H, m, CH2), 2.04–1.86 (3H, m, CH2 and
H-3), 1.84–1.67 (1H, m, CH2); δC: 145.5, 145.4, 144.8, 135.4,
128.8, 127.1, 121.8, 119.6, 115.4, 114.5, 110.7, 110.6, 58.2,
56.0, 38.0, 32.9, 31.6, 24.4, 23.6. m/z (HRMS-ESI) 298.1796
(MH+, C19H24NO2 requires 298.1807), 194 (2).
( )-Galipinine, 4
22 Y. Oikawa, T. Tanaka, K. Horita and O. Yonemitsu, Tetrahedron Lett.,
1984, 25, 5397.
23 K. Horita, T. Yoshioka, T. Tanaka, Y. Oikawa and O. Yonemitsu, Tetrahe-
dron, 1986, 42, 3021.
24 Increasing the pressure of this reaction led to significant degradation of
the product, possibly through the competitive reduction of the aromatic
ring.
25 P. Y. Yang and Y. G. Zhou, Tetrahedron: Asymmetry, 2004, 15, 1145.
26 Z.-J. Wang, H.-F. Zhou, T.-L. Wang, Y.-M. He and Q.-H. Fan, Green
Chem., 2009, 11, 767.
27 The synthesis of angustureine using a chiral auxiliary in an aza-Michael
reaction has been reported: S. A. Bentley, S. G. Davies, J. A. Lee, P.
M. Roberts and J. E. Thomson, Org. Lett., 2011, 13, 2544.
28 V. Sridharan, P. A. Suryavanshi and J. C. Menéndez, Chem. Rev., 2011,
111, 7157.
29 N. Nagata, M. Miyakawa, S. Amano, K. Furuya, N. Yamamoto,
H. Nejishima and K. Inoguchi, Bioorg. Med. Chem. Lett., 2011, 21, 6310.
30 P. Bamborough and C.-W. Chung, WO2011054851A1, 2011.
31 E. H. Demont and R. L. M. Gosmini, WO2011054848A1, 2011.
32 C. M. Park, J. I. Choi, J. H. Choi, S. Y. Kim, W. K. Park and
C. M. Seong, Bioorg. Med. Chem. Lett., 2011, 21, 698.
33 S. M. Kupchan and A. Yoshitake, J. Org. Chem., 1969, 34, 1062.
34 S. N. Aslam, P. C. Stevenson, S. J. Phythian, N. C. Veitch and
D. R. Hall, Tetrahedron, 2006, 62, 4214.
Purified by column chromatography as a colourless gum (26 mg,
31%). Rf = 0.31 (Et2O–hexane 1 : 20); νmax/cm−1 2940, 2880,
1610, 1500, 1490, 1450, 1240; δH: 7.12 (1H, t, J = 7.9 Hz, Ar-
H), 7.01 (1H, d, J = 7.2 Hz, Ar-H), 6.78–6.62 (4H, m, Ar-H),
6.56 (1H, d, J = 7.9, Ar-H), 5.95 (2H, s, OCH2), 3.36–3.26 (1H,
m, H-2), 2.95 (3H, s, NCH3) 2.93–2.85 (1H, m, CH2),
2.78–2.60 (2H, m, H-4 and CH2), 2.61–2.46 (1H, m, H-4′),
2.03–1.84 (3H, m, H-3 and CH2), 1.80–1.67 (1H, m, H-3′); δC:
147.6, 145.6, 145.4, 135.9, 128.7, 127.1, 121.7, 120.9, 115.4,
110.6, 108.7, 108.2, 100.8, 58.2, 38.1, 33.2, 32.0, 24.4, 23.6.
m/z (HRMS-ESI) 296.1647 (MH+, C19H22NO2 requires
296.1651).
Acknowledgements
We thank the EPSRC and AstraZeneca for studentship support
(Doctoral Training Grant: GR/T18783/01). We are also grateful
to Johnson Matthey for the loan of Pd salts, and the gift of
nickel sponge.
35 D. C. Harrowven, M. I. T. Nunn, N. J. Blumire and D. R. Fenwick, Tetra-
hedron, 2001, 57, 4447.
4432 | Org. Biomol. Chem., 2012, 10, 4424–4432
This journal is © The Royal Society of Chemistry 2012