A 4,5-Diphosphino-Substituted Imidazolium Salt
COMMUNICATION
Figure 3. Molecular structure of complex 6 shown with 50% thermal el-
À
lipsoids. Hydrogen atoms (except C2 H) are omitted for clarity. Selected
À
À
interatomic distances (ꢄ) and angles (8): C2 N1 1.335(4), C2 N3
À
À
À
À
1.327(4), N1 C5 1.388(4), N3 C4 1.380(4), C4 C5 1.363(4), C5 P1
1.808(3), C4 P2 1.800(3); N1-C2-N3 109.3(3).
Figure 4. Molecular structure of the heterometallic complex 8a shown
with 50% thermal ellipsoids. Hydrogen atoms (except those of the allyl
group) are omitted for clarity. Selected interatomic distances (ꢄ) and
À
ing that the structural parameters of the ligand remain es-
sentially constant upon coordination.
À
À
À
À
angles (8): C2 N1 1.352(4), C2 N3 1.358(4), N1 C5 1.388(4), N3 C4
À
À
À
À
1.386(4), C4 C5 1.360(4), C5 P1 1.804(3), C4 P2 1.803(3), Pd1 C2
2.035(3); N1-C2-N3 105.5(3).
The metal-containing imidazolium salts [6]
[7](CF3SO3) readily react with a variety of metal complexes,
in the presence of a deprotonating agents, such as LiN-
(SiMe3)2 (LiHMDS), to yield mixed, diphosphine–NHC, het-
ACHTUGNERTN(NUNG CF3SO3) and
ACHTUNGTRENNUNG
G
using the methodology above. We also anticipate that the
use of other imidazoles and chlorophosphines as starting
materials can further expand the synthetic utility of the
present experimental approach.
erometallic derivatives. Selected examples are shown in
Scheme 4 and involve coordination of the in situ generated
In summary, we have described herein the synthesis of the
unique 4,5-diphosphino-1,3-dimethyl-imidazolium salt [5]-
AHCTUNGTREN(GNUN CF3SO3), which generates, in a modular manner, different
heterometallic complexes with the mixed diphosphine–NHC
ligand 4. For future applications in organometallic synthesis
and dual catalysis, these results could be extended to the
preparation of a great variety of target heterometallic com-
plexes containing carbene 4. The new imidazolium–diphos-
phine ligand 5 is also promising as an ionophilic diphosphine
for ionic-liquid, biphasic catalysis.
Scheme 4. Formation of heterodimetallic complexes 8a–c with diphosphi-
no-functionalized NHC 4 ([Mn]=[MnBr(CO)3]).
Experimental Section
Selected spectroscopic data for the new compounds:
Ligand [5]ACTHNUTRGNEUNG
(CF3SO3): 1H NMR (400 MHz, CD2Cl2, 258C): d=9.50 (s, 1H,
carbene to [PdCl
fragments to give complexes 8a, 8b and 8c, respectively.
The most significant spectroscopic features of the new com-
G
E
N2CH), 3.47 ppm (s, 6H, Me); 13C{1H} NMR (100.61 MHz, CD2Cl2,
258C): d=144.8 (s, C2), 139.9 (m, C4 and C5), 36.6 ppm (s, Me);
31P{1H} NMR (162.14 MHz, CD2Cl2, 258C): d=À30.4 ppm (s, PPh2).
Ligand 4: 1H NMR (400 MHz, CD2Cl2, 258C): d=3.48 ppm (s, 6H, Me);
13C{1H} NMR (100.61 MHz, CD2Cl2, 258C): d=208.4 (s, C2), 136.7 (br,
C4 and C5), 37.6 ppm (s, Me); 31P{1H} NMR (162.14 MHz, CD2Cl2,
258C): d=À33.3 ppm (s, PPh2).
pounds are the disappearance of the C2 H resonances in
1
the H NMR spectra and the presence of the low-field car-
bene-carbon resonances around 200 ppm in the
13C{1H} NMR spectra (for full spectroscopic data see the Ex-
perimental Section and the Supporting Information).[17] Ad-
ditionally, the crystal structure of 8a, as a representative ex-
ample, has been determined (Figure 4).[16]
Considering the extraordinary coordination capability of
diphosphines and NHCs, we envisage that a plethora of pre-
designed heterodimetallic complexes could be prepared by
Complex [6]ACTHNUTRGNEUNG
(CF3SO3): 1H NMR (300 MHz, CD2Cl2, 258C): d=9.41 (s,
1H, N2CH), 3.48 ppm (s, 6H, Me); 13C{1H} NMR (75.5 MHz, CD2Cl2,
258C): d=218.5 (s, CO), 217.2 (s, CO), 144.9 (s, C2), 134.7 (br, C4 and
C5), 43.0 ppm (s, Me); 31P{1H} NMR (121.4 MHz, CD2Cl2, 258C): d=
47.3 ppm (s, PPh2); IR (CH2Cl2): n˜(CO)=2036 (vs), 1975 (s), 1936 cmÀ1
(s).
Complex [7]
1H, N2CH), 3.37 ppm (s, 6H, Me); 13C{1H} NMR (100.61 MHz, CD2Cl2,
(CF3SO3): 1H NMR (400 MHz, CD2Cl2, 258C): d=9.64 (s,
ACHTUNGTRENNUNG
Chem. Eur. J. 2012, 18, 4485 – 4488
ꢃ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4487