Communication
ChemComm
8 (a) N. K. Mishra, S. Sharma, J. Park, S. Han and I. S. Kim, ACS Catal.,
2017, 7, 2821; (b) D. Kumar, S. R. Vemula, N. Balasubramanian and
G. R. Cook, Acc. Chem. Res., 2016, 49, 2169; (c) P. Koschker and
B. Breit, Acc. Chem. Res., 2016, 49, 1524; (d) S. Krautwald,
M. A. Schafroth, D. Sarlah and E. M. Carreira, J. Am. Chem. Soc.,
2014, 136, 3020; (e) Q. Cheng, H.-F. Tu, C. Zheng, J.-P. Qu,
G. Helmchen and S.-L. You, Chem. Rev., 2019, 119, 1855.
9 (a) T. Besset, N. Kuhl, F. W. Patureau and F. Glorius, Chem. – Eur. J.,
2011, 17, 7167; (b) X.-H. Hu, J. Zhang, X.-F. Yang, Y.-H. Xu and
T.-P. Loh, J. Am. Chem. Soc., 2015, 137, 3169; (c) Q.-J. Liang, C. Yang,
F.-F. Meng, B. Jiang, Y.-H. Xu and T.-P. Loh, Angew. Chem., Int. Ed.,
2017, 56, 5091; (d) B. Jiang, M. Zhao, S.-S. Li, Y.-H. Xu and T.-P. Loh,
Angew. Chem., Int. Ed., 2018, 57, 555; (e) Y. Sun, K. Meng, J. Zhang,
M. Jin, N. Huang and G. Zhong, Org. Lett., 2019, 21, 4868; ( f ) T. Li,
J. Zhang, C. Yu, X. Lu, L. Xu and G. Zhong, Chem. Commun., 2017,
53, 12926; (g) C. Yu, J. Zhang and G. Zhong, Chem. Commun., 2017,
53, 9902; (h) F. Li, C. Yu, J. Zhang and G. Zhong, Org. Lett., 2016,
18, 4582; (i) L. Xu, K. Meng, J. Zhang, Y. Sun, X. Lu, T. Li, Y. Jiang
and G. Zhong, Chem. Commun., 2019, 55, 9757.
The amide group can be conveniently removed under Ohshima’s
methanolysis conditions by nickel catalysis, providing ester 7 in
71% yield with 58% recovery of 8-aminoquinolin (Scheme 3b).24
Because E-substituted alkenes are far less reactive (Table 2, 3ya),
we carried out a selective C–H allylation of an inseparable
Z/E-mixed alkenes 1a. To our satisfaction, 1,4-diene 3aa was
smoothly obtained in 80% yield (Scheme 3c). Also, an inseparable
isomeric skipped diene 3ab was efficiently converted to corres-
ponding alkane 9 via catalytic hydrogenation (Scheme 3d).
In conclusion, we have developed a catalytic method to
synthesize branched 1,4-dienes using non-conjugated alkenyl
amides and allyl carbonate. This C–H allylation proceeded by
an N,N-bidentate chelation-assisted C(alkenyl)–H activation by the
formation of an exo-metallocycle intermediate. A broad array of
alkenyl substrates and allyl partners are tolerated in this reaction.
Although relatively high loading (15–20 mol %) of Pd(OAc)2 is
required to ensure high yield, the C–H transformation can be
performed on gram scale and the amide auxiliary can be
conveniently removed under nickel-catalyzed methanolysis
conditions. We anticipate that this method will stimulate interest
in developing synthetically enabling C(alkenyl)–H activation
methods and find broad applicability in multifarious synthetic
endeavors.
10 (a) C. Feng, D. Feng and T.-P. Loh, Chem. Commun., 2015, 51, 342;
´
´
(b) D.-G. Yu, T. Gensch, F. Azambuja, S. Vasquez-Cespedes and
F. Glorius, J. Am. Chem. Soc., 2014, 136, 17722; (c) S.-S. Zhang,
J.-Q. Wu, Y.-X. Lao, X.-G. Liu, Y. Liu, W.-X. Lv, D.-H. Tan, Y.-F. Zeng
and H. Wang, Org. Lett., 2014, 16, 6412; (d) Y. Kuninobu, K. Ohta
and K. Takai, Chem. Commun., 2011, 47, 10791; (e) X. Wu and H. Ji,
J. Org. Chem., 2018, 83, 12094; ( f ) H. He, W.-B. Liu, L.-X. Dai and
S.-L. You, J. Am. Chem. Soc., 2009, 131, 8346.
11 We have previously developed a chelation-assisted alkenyl C–H alkenyla-
tion via isomerization of 1, 4-dienes to thermodynamicallystable1,3-
dienes, see ref. 9h and F. Li, C. Shen, J. Zhang, L. Wu, X. Zhuo,
L. Ding and G. Zhong, Adv. Synth. Catal., 2016, 358, 3932–3937.
12 Alkynylation, see: (a) C. Feng, D. Feng and T.-P. Loh, Chem. Com-
mun., 2014, 50, 9865; (b) F. Xie, Z. Qi, S. Yu and X. Li, J. Am. Chem.
Soc., 2014, 136, 4780; (c) E. Tan, O. Quinonero, M. E. de Orbe and
A. M. Echavarren, ACS Catal., 2018, 8, 2166.
13 Alkylation, see: (a) Z. Dong, Z. Ren, S. J. Thompson, Y. Xu and
G. Dong, Chem. Rev., 2017, 117, 9333; (b) Y. Aihara and N. Chatani,
J. Am. Chem. Soc., 2013, 135, 5308.
14 Trifluoromethylation, see: (a) C. Feng and T.-P. Loh, Angew. Chem.,
Int. Ed., 2013, 52, 12414; (b) Z. Fang, Y. Ning, P. Mi, P. Liao and X. Bi,
Org. Lett., 2014, 16, 1522.
We gratefully acknowledge National Natural Science Founda-
tion of China (NSFC) (21502037 and 21672048), Natural Science
Foundation of Zhejiang Province (ZJNSF) (LY19B020006), and the
Pandeng Plan Foundation of Hangzhou Normal University for
Youth Scholars of Materials, Chemistry and Chemical Engineer-
ing for financial support.
Conflicts of interest
15 Arylation, see: (a) L. Ilies, S. Asako and E. Nakamura, J. Am. Chem.
Soc., 2011, 133, 7672; (b) X. Cheng, Z. Chen, Y. Gao, F. Xue and
C. Jiang, Org. Biomol. Chem., 2016, 14, 3298.
There are no conflicts to declare.
¨
16 Halogenation, see: (a) N. Kuhl, N. Schroder and F. Glorius, Org. Lett.,
2013, 15, 3860Borylation, see: (b) I. Sasaki, H. Doi, T. Hashimoto,
T. Kikuchi, H. Ito and T. Ishiyama, Chem. Commun., 2013,
49, 7546acetoxylation, see: (c) Z.-L. Zang, S. Zhao, S. Karnakanti,
C.-L. Liu, P.-L. Shao and Y. He, Org. Lett., 2016, 18, 5014.
17 Tandem cross-coupling/annulation, see: (a) Y. Zhao, S. Li, X. Zheng,
J. Tang, Z. She, G. Gao and J. You, Angew. Chem., Int. Ed., 2017,
56, 4286; (b) T. Piou and T. Rovis, J. Am. Chem. Soc., 2014, 136, 11292;
(c) R. Kuppusamy, K. Muralirajan and C.-H. Cheng, ACS Catal., 2016,
6, 3909.
18 (a) Z. Ren, F. Mo and G. Dong, J. Am. Chem. Soc., 2012, 134, 16991;
(b) R. Y. Mawo, S. Mustakim, V. G. Young, M. R. Hoffmann and
I. P. Smoliakova, Organometallics, 2007, 26, 1801.
19 (a) W.-J. Kong, Y.-J. Liu, H. Xu, Y.-Q. Chen, H.-X. Dai and J.-Q. Yu,
J. Am. Chem. Soc., 2016, 138, 2146; (b) H.-C. Tsai, Y.-H. Huang and
C.-M. Chou, Org. Lett., 2018, 20, 1328; (c) M. Liu, P. Yang,
M. K. Karunananda, Y. Wang, P. Liu and K. M. Engle, J. Am. Chem.
Soc., 2018, 140, 5805; (d) B. S. Schreib and E. M. Carreira, J. Am.
Chem. Soc., 2019, 141, 8758.
20 (a) V. G. Zaitsev, D. Shabashov and O. Daugulis, J. Am. Chem. Soc.,
2005, 127, 13154; (b) O. Daugulis, J. Roane and L. D. Tran, Acc. Chem.
Res., 2015, 48, 1053.
21 D. Lapointe and K. Fagnou, Chem. Lett., 2010, 39, 1118.
22 (a) N. Solin and K. J. Szabo, Organometallics, 2001, 20, 5464; (b) A. M.
Zawisza, S. Bouquilon and J. Muzart, Eur. J. Org. Chem., 2007, 3901;
(c) J.-Q. Yu, M. J. Gaunt and J. B. Spencer, J. Org. Chem., 2002, 67, 4627.
23 E. M. Simmons and J. F. Hartwig, Angew. Chem., Int. Ed., 2012, 51,
3066.
Notes and references
1 (a) Y. Shinohara, F. Kudo and T. Eguchit, J. Am. Chem. Soc., 2011,
133, 18134; (b) P. Winter, W. Hiller and M. Christmann, Angew.
Chem., Int. Ed., 2012, 51, 3396; (c) F. Lindner, S. Friedrich and
F. Hahn, J. Org. Chem., 2018, 83, 14091; (d) S. Das, D. Paul and
R. K. Goswami, Org. Lett., 2016, 18, 1908.
2 S. Durand, J.-L. Parrain and M. Santelli, J. Chem. Soc., Perkin Trans. 1,
2000, 253.
3 Cross-couplings: (a) J. Y. Hamilton, D. Sarlah and E. M. Carreira,
J. Am. Chem. Soc., 2013, 135, 994; (b) J. Y. Hamilton, D. Sarlah and
E. M. Carreira, J. Am. Chem. Soc., 2014, 136, 3006; (c) D. P. Todd,
B. B. Thompson, A. J. Nett and J. Montgomery, J. Am. Chem. Soc.,
2015, 137, 12788; (d) M. Hirano, ACS Catal., 2019, 9, 1408.
4 Ene reaction: (a) S. J. Sturla, N. M. Kablaoui and S. L. Buchwald,
J. Am. Chem. Soc., 1999, 121, 1976; (b) B. B. Snider, Acc. Chem. Res.,
1980, 13, 426.
´ˇ
5 Olefination: (a) J. Pospısil and I. E. Marko, J. Am. Chem. Soc., 2007,
129, 3516; (b) S. Xu, S. Zhu, J. Shang, J. Zhang, Y. Tang and J. Dou,
J. Org. Chem., 2014, 79, 3696.
6 (a) D. Basavaiah, N. Kumaragurubaran and D. S. Sharada, Tetra-
hedron Lett., 2001, 42, 85; (b) D. Basavaiah, D. S. Sharada,
N. Kumaragurubaran and R. M. Reddy, J. Org. Chem., 2002, 67, 7135.
7 (a) S. M. Jing, V. Balasanthiran, V. Pagar, J. C. Gallucci and T. V.
Ra-janBabu, J. Am. Chem. Soc., 2017, 139, 18034; (b) V. A. Schmidt,
C. R. Kennedy, M. J. Bezdek and P. J. Chirik, J. Am. Chem. Soc., 2018,
140, 3443; (c) B. M. Trost and H. Gholami, J. Am. Chem. Soc., 2018,
140, 11623; (d) Y. Hiroi, N. Komine, S. Komiya and M. Hirano,
Organometallics, 2014, 33, 6604.
24 T. Deguchi, H.-L. Xin, H. Morimoto and T. Ohshima, ACS Catal.,
2017, 7, 3157.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 13582--13585 | 13585