L. Wang et al. / Carbohydrate Research 368 (2013) 73–77
77
enzymes (84 lg RhGT1 or 30 l
g OleDPSA). The buffers used were
Supplementary data
MES, pH 5.0–6.5; MOPS, pH 7.0; Tris–HCl, pH 7.5–9.0; CAPSO,
pH9.5; and CAPS, pH 10.0. After 2 h of incubation at 37 °C, reac-
tions were quenched by the addition of trichloroacetic acid, and
products were analyzed by a Shimadzu LC-2010A system equipped
with a SPD-20A UV detector and a Synergi 4u Polar-RP18 column.
Flavonoid glucosides were separated using a linear gradient from
15% to 90% acetonitrile with a flow rate of 1 ml minꢀ1 for 30 min.
All assays were carried out in duplicate.
Supplementary data associated with this article can be found, in
References
1. Harborne, J. B. The Flavonoids, Advances in Research Since 1986; Chapman and
Hall: London, 1986.
2. Luzhetskyy, A.; Mendez, C.; Salas, J. A.; Bechthold, A. Curr. Top. Med. Chem. 2008,
8, 680–709.
3. Bowles, D.; Isayenkova, J.; Lim, E. K.; Poppenberger, B. Curr. Opin. Plant Biol.
2005, 8, 254–263.
3.3. Molecular modeling
UGT71G1 shares 34% sequence identity and 54% sequence simi-
larity with RhGT1, and its structure was used as template for homol-
ogy modeling of RhGT1. MODELLER was employed to construct the
3D model of RhGT1 via (PS)2 (pronounced PS square) homology
mized by several steps of energy minimization of side chains and
loop regions. Stereochemical and overall quality of the final model
was assessed by using PROCHECK and ProSA. No residues were lo-
cated in disallowed regions, and only seven residues in the model
were in generously allowed regions. The PROCHECK overall g factor
evaluating all torsion angles and bond lengths was ꢀ0.11, indicating
a high-quality model. The ProSA Z score of the RhGT1 model was cal-
culated to be ꢀ10.07. Z scores for experimentally determined X-ray
structures of proteins with similar size (around 450 amino acids) lie
in the range of ꢀ6 to ꢀ13. The Z score of the model was thus within
the range of scores typical for native proteins with similar size. The
structure model of OleDPSA was generated by CPHmodels28 with
OleD structure as template. Docking quercetin (or 7-hydroxyflav-
one) into the putative binding pocket of OleDPSA (or RhGT1) was per-
formed by using autodock4.2.29
4. Gachon, C. M.; Langlois-Meurinne, M.; Saindrenan, P. Trends Plant Sci. 2005, 10,
542–549.
5. Shao, H.; He, X.; Achnine, L.; Blount, J. W.; Dixon, R. A.; Wang, X. Plant Cell 2005,
17, 3141–3154.
6. Offen, W.; Martinez-Fleites, C.; Yang, M.; Kiat-Lim, E.; Davis, B. G.; Tarling, C. A.;
Ford, C. M.; Bowles, D. J.; Davies, G. J. EMBO J. 2006, 25, 1396–1405.
7. Li, L.; Modolo, L. V.; Escamilla-Trevino, L. L.; Achnine, L.; Dixon, R. A.; Wang, X. J.
Mol. Biol. 2007, 370, 951–963.
8. Modolo, L. V.; Li, L.; Pan, H.; Blount, J. W.; Dixon, R. A.; Wang, X. J. Mol. Biol.
2009, 392, 1292–1302.
9. Wang, X. FEBS Lett. 2009, 583, 3303–3309.
10. He, X. Z.; Wang, X.; Dixon, R. A. J. Biol. Chem. 2006, 281, 34441–34447.
11. Osmani, S. A.; Bak, S.; Imberty, A.; Olsen, C. E.; Moller, B. L. Plant Physiol. 2008,
148, 1295–1308.
12. Choi, S. H.; Ryu, M.; Yoon, Y. J.; Kim, D. M.; Lee, E. Y. Biotechnol. Lett. 2012, 34,
499–505.
13. Hyung Ko, J.; Gyu Kim, B.; Joong-Hoon, A. FEMS Microbiol. Lett. 2006, 258, 263–
268.
14. Ahn, B. C.; Kim, B. G.; Jeon, Y. M.; Lee, E. J.; Lim, Y.; Ahn, J. H. J. Microbiol.
Biotechnol. 2009, 19, 387–390.
15. Kim, H. J.; Kim, B. G.; Kim, J. A.; Park, Y.; Lee, Y. J.; Lim, Y.; Ahn, J. H. J. Microbiol.
Biotechnol. 2007, 17, 539–542.
16. Yang, M.; Proctor, M. R.; Bolam, D. N.; Errey, J. C.; Field, R. A.; Gilbert, H. J.;
Davis, B. G. J. Am. Chem. Soc. 2005, 127, 9336–9337.
17. Williams, G. J.; Zhang, C.; Thorson, J. S. Nat. Chem. Biol. 2007, 3, 657–662.
18. Gantt, R. W.; Goff, R. D.; Williams, G. J.; Thorson, J. S. Angew. Chem., Int. Ed.
2008, 47, 8889–8892.
19. Bolam, D. N.; Roberts, S.; Proctor, M. R.; Turkenburg, J. P.; Dodson, E. J.;
Martinez-Fleites, C.; Yang, M.; Davis, B. G.; Davies, G. J.; Gilbert, H. J. Proc. Natl.
Acad. Sci. U.S.A. 2007, 104, 5336–5341.
20. Ogata, J.; Kanno, Y.; Itoh, Y.; Tsugawa, H.; Suzuki, M. Nature 2005, 435, 757–
758.
3.4. Substrate specificity studies
Flavonoid substrates were purchased from Alfa aesar (Tianjin,
China), Meryer (Shanghai, China) and Aladdin (Shanghai, China),
and dissolved in DMSO. Enzyme assays were performed in
21. Quiros, L. M.; Carbajo, R. J.; Brana, A. F.; Salas, J. A. J. Biol. Chem. 2000, 275,
11713–11720.
100 mM MES or Tris–HCl (pH 7.0 for RhGT1 and pH 8.0 for OleDPSA
)
22. Baumli, S.; Lolli, G.; Lowe, E. D.; Troiani, S.; Rusconi, L.; Bullock, A. N.;
Debreczeni, J. E.; Knapp, S.; Johnson, L. N. EMBO J. 2008, 27, 1907–1918.
23. Shapiro, G. I. Clin. Cancer Res. 2004, 10, 4270s–4275s.
24. Zhang, C.; Griffith, B. R.; Fu, Q.; Albermann, C.; Fu, X.; Lee, I. K.; Li, L.; Thorson, J.
S. Science 2006, 313, 1291–1294.
as above described. Products quantitatively converted or multiple
products generated in one reaction were identified by LC–MS
(Table S1).
25. Kim, B. G.; Jung, N. R.; Joe, E. J.; Hur, H. G.; Lim, Y.; Chong, Y.; Ahn, J. H.
ChemBioChem 2010, 11, 2389–2392.
26. Willits, M. G.; Giovanni, M.; Prata, R. T.; Kramer, C. M.; De Luca, V.; Steffens, J.
C.; Graser, G. Phytochemistry 2004, 65, 31–41.
3.5. Mass spectrometry (LC–MS)
LC–MS analysis of the flavonoid glucosides was carried out on a
LC–MS 2020 (Shimadzu) system. Identification was based on a
combination of HPLC retention time, UV, and mass spectrometry
spectral data.
27. Simkhada, D.; Kim, E.; Lee, H. C.; Sohng, J. K. Mol. Cells 2009, 28, 397–401.
28. Nielsen, M.; Lundegaard, C.; Lund, O.; Petersen, T. N. Nucleic Acids Res. 2010, 38,
W576–W581.
29. Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D.
S.; Olson, A. J. J. Comput. Chem. 2009, 30, 2785–2791.
Acknowledgements
This work was supported by the Tianjin Natural Science Foun-
dation (Grant No. DE024621) and the Fundamental Research Funds
for the Central Universities (Grant No. 65030071 and 65011771).