ORGANIC
LETTERS
2012
Vol. 14, No. 12
3008–3011
Manganese Porphyrin Catalyzed
Cycloisomerization of Enynes
Takuya Ozawa, Takuya Kurahashi,* and Seijiro Matsubara*
Department of Material Chemistry, Graduate School of Engineering, Kyoto University,
Kyoto 615-8510, Japan
tkuraha@orgrxn.mbox.media.kyoto-u.ac.jp; matsubar@orgrxn.mbox.media.kyoto-u.ac.jp
Received April 21, 2012
ABSTRACT
Cycloisomerization of 1,6-enynes to five- or six-membered ring systems is successfully carried out in the presence of a cationic manganese(III)
catalyst. The use of a structurally rigid tetradentate porphyrin as the equatorial ligand and a weakly coordinating axial ligand is the key to bringing
out the catalytic reactivity of manganese for the reaction. The axial ligand of the catalyst has a marked effect on the product and selectively aids the
formation of five- or six-membered cyclic products.
In the past few decades, many transition-metal (Ru, Rh,
Ir Pt, and Au) complexes have emerged as powerful
catalysts for the cycloisomerization of enynes, a reaction
that gives easy access to highly functionalized carbocyclic
and heterocyclic compounds in an essentially atom-
economical manner.1 This cycloisomerization is consid-
ered to be triggered by activation of the alkyne moiety
through coordination to the electrophilic metal complex to
afford key intermediates such as vinyl metal and metal
alkylidene species. Therefore, taking into account the
Lewis acidity of the metal complexes toward π-bonds, we
state that higher-valent redox-stable complexes that do not
oxidize the substrate are more favorable catalysts for the
cycloisomerization than are low-valent metal complexes.
In this context, we supposed that a cationic high-valent
metalloporphyrin would be an ideal catalyst because the
structurally rigid tetradentate porphyrin ligand with a
large π-conjugated planar aromatic structure can help
in maintaining the high oxidation state of the metal
throughout the catalytic process. This characteristic fea-
ture of porphyrin ligands can be exploited to reveal the
potential catalytic ability of some high-valent transition
metals that have not been unexplored for use as catalysts
in cycloisomerization.2 Herein, we report that the
cationic manganese(III) porphyrin complex behaves like
a precious-metal complex such as a Pt complex and
catalyzes the cycloisomerization of enynes to afford cyclic
compounds.
[Mn(TPP)]SbF6 was synthesized by treating [Mn(TPP)]Cl
with AgSbF6 in CH2Cl2 at ambient temperature for 5 h
(Scheme 1).3 Recrystallization of the resulting [Mn(TPP)]SbF6
from toluene afforded the [Mn(TPP)]SbF6(toluene) com-
plex. The X-ray crystal structure analysis at ambient
(2) For examples of the use of metalloporphyrins in nonoxidative
bond formation, see: (a) Suda, K.; Baba, K.; Nakajima, S.-I.;
Takanami, T. Chem. Commun. 2002, 2570. (b) Suda, K.; Kikkawa, T.;
Nakajima, S.-I.; Takanami, T. J. Am. Chem. Soc. 2004, 126, 9554. (c)
Suda, K.; Baba, K.; Nakajima, S.-I.; Takanami, T. Tetrahedron Lett.
1999, 40, 7243. (d) Chen, J.; Che, C.-M. Angew. Chem., Int. Ed. 2004, 43,
4950. (e) Li, Y.; Chan, P. W. H.; Zhu, N.-Y.; Che, C.-M.; Kwong, H.-L.
Organometallics 2004, 23, 54. (f) Schmidt, J. A. R.; Lobkovsky, E. B.;
Coates, G. W. J. Am. Chem. Soc. 2005, 127, 11426. (g) Zhou, C.-H.;
Chan, P. W. H.; Che, C.-M. Org. Lett. 2006, 8, 325. (h) Fujiwara, K.;
Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2012, 134, 5512. (i)
Morandi, B.; Dolva, A.; Carreira, E. M. Org. Lett. 2012, 14, 2162.
(3) (a) Williamson, M. M.; Hill, C. L. Inorg. Chem. 1987, 26, 4155. (b)
Munro, O. Q.; Camp., G. L. Acta Crystallogr., Sect. C 2003, 59, 132. (c)
Williamson, M. M.; Hill, C. L. Inorg. Chem. 1986, 25, 4668. (d) Hill,
H. A. O.; Macfarlane, A. J.; Williams, R. J. P. J. Chem. Soc. A 1969,
1704. (e) Reed, C. A.; Kouba, J. K.; Grimes, C. J.; Cheung, S. K. Inorg.
Chem. 1978, 17, 2666. (f) Kirner, J. F.; Reed, C. A.; Scheidt, W. R. J. Am.
Chem. Soc. 1977, 99, 1093.
(1) For reviews, see: (a) Belmont, P.; Parker, E. Eur. J. Org. Chem.
2009, 6075. (b) Lee, S. I.; Chatani, N. Chem. Commun. 2009, 371. (c)
€
Furstner, A. Chem. Soc. Rev. 2009, 38, 3208. (d) Gorin, D. J.; Sherry,
ꢀ
ꢀ~
B. D.; Toste, F. D Chem. Rev. 2008, 108, 3351. (e) Jimenez-Nunez, E.;
Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (f) Michelet, V.; Toullec,
ꢀ
ꢀ
P. Y.; Genet, J.-P. Angew. Chem., Int. Ed. 2008, 47, 4268. (g) Jimenez-
Nunez, E.; Echavarren, A. M. Chem. Commun. 2007, 333. (h) Zhang, L.;
ꢀ~
Sun, J.; Kozmin, A. S. Adv. Synth. Catal. 2006, 348, 2271. (i) Nevado, C.;
Echavarren, A. M. Synthesis 2005, 167. (j) Echavarren, A. M.; Nevado,
C. Chem. Soc. Rev. 2004, 33, 431. (k) Fairlamb, I. J. S. Angew. Chem.,
Int. Ed. 2004, 43, 1048. (l) Aubert, C.; Buisine, O.; Malacria, M. Chem.
Rev. 2002, 102, 813. (m) Trost, B. M. Science 1991, 254, 1471.
r
10.1021/ol301416f
Published on Web 06/06/2012
2012 American Chemical Society