K. Durka et al.
Hz), 141.57 (m, C-F, J = 245 Hz), 138.82, 138.24, 133.54, 133.09,
132.43, 130.64, 118.98 (CN), 113.35, 75.75 (Cbenz). Anal. Calcd for
C14H8BF4NO3: C, 51.73, H, 2.48, N, 4.31 Found: C, 51.32, H, 2.95,
N, 4.43.
corrected for Lorentz and polarization effects. The multiscan
absorption correction, scaling, and merging of reflection data
were done with SORTAV.[24] All structures were solved by direct
methods using SHELXS-97 and refined using SHELXL-97.[25] The
refinement was based on F2 for all reflections except those with
very negative F2. Weighted R factors (wR) and all goodness-of-fit
(GooF) values are based on F2. All non-hydrogen atoms were refined
anisotropically. All hydrogen atoms were placed in calculated posi-
tions with C-H distance of 0.95 Å (phenyl), 0.99 Å (methylene) and
O-H distance of 0.84 Å. They were visible in difference maps and
they were included in the refinement in riding-motion approxima-
tion with Uiso(phenyl H) = 1.2Ueq(C), Uiso(methylene H) = 1.5Ueq(C)
and Uiso(OH H) =1.5Ueq(O). The components of the anisotropic dis-
placement parameters in the direction of the bond of C9 and C14
were restrained to be equal within an effective standard deviation.
C14H8BF4NO3; MW = 325.02 a.u.; T= 100(2) K; triclinic space group
P-1; a = 4.976(1) Å, b = 5.938(1) Å, c = 21.801(1) Å, a = 95.55(1)ꢀ,
Compound 8b
M.p. 161ꢀC (dec.); 1H NMR (400 MHz, acetone-d6): d 7.90 (m, ArCN
,
J = 8.4 Hz, 4H), 7.32 (m, Ar, J = 8.8 Hz, 2H); 13C{1H} NMR (100.6
MHz, acetone-d6): 166.33 (m, C-F, J = 242 Hz), 143.55 (d, C-CF,
J = 5 Hz), 133.73, 133.65, 128.98, 128.68, 119.07 (CN), 112.83,
110.37 (m, J = 30 Hz). Anal. Calcd for C13H8BF2NO2: C, 60.28, H,
3.11, N, 5.41 Found: C, 60.51, H, 3.94, N, 5.72.
Compound 8c
M.p. 77–78ꢀC; 1H NMR (200 MHz, acetone-d6): d 7.75 (d, Ar, H-C-C-
CO, J = 8 Hz, 2H), 7.36 (d, Ar, H-C-Cipso, J = 8 Hz, 2H), 7.27 (d, Ar, H-
C-C-F, JC-F = 8 Hz, 2H), 3.62 (hp, N-C-H, J = 7 Hz, 2H), 1.34 (d, CH3iPr
J = 7 Hz, 12H), 0.39 (s, SiCH3, 9H); 13C{1H} NMR (100.6 MHz, CDCl3):
167.35 (dd, C-F, J = 243 Hz, J = 17 Hz), 166.80 (CO), 144.43 (t, Cipso
ipso, J = 11 Hz), 139.85, 138.97, 127.28, 127.07, 126.71, 109.40 (d,
,
b =92.23(1)ꢀ, g =95.31(1)ꢀ, V=637.6(1) Å3; Z=2; dcalc =1.693 g cmÀ3
;
-
m = 0.155 mmÀ1; Of 15 387 reflections collected, 4770 were unique
(Rint = 0.0325). Refinement on F2 concluded with the values
R1 = 0.0902 and wR2 = 0.1365 for 208 parameters (58 restraints)
and 3986 data with I > 2s(I).
C
J = 30 Hz), 48.79 (2CHiPr), 20.72 (4CH3iPr), 0.22 (3CH3-Si). Anal.
Calcd for C22H29Cl2NOSi: C, 67.83, H, 7.50, N, 3.60 Found: C,
67.91, H, 7.62, N, 3.62.
Compound 9b
Acknowledgements
1
M.p. 124–125ꢀC; H NMR (400 MHz, CDCl3): d 7.52 (d, Ar, H-C-C-
This work was supported by the Warsaw University of Technology.
The X-ray measurements of compound 6d were undertaken at
the Crystallographic Unit of the Physical Chemistry Laboratory,
Chemistry Department, University of Warsaw. Support from Aldrich
Chemical Company, Milwaukee, WI, USA, through the donation of
chemicals and equipment is gratefully acknowledged.
CO, J = 8 Hz, 2H), 7.45 (d, Ar, H-C-Cipso, J = 1.6 Hz, 2H), 7.34 (d, Ar,
H-C-Cipso, J = 8 Hz, 2H), 7.24 (t, Ar, H-C-C-Cl, J = 1.6 Hz, 1H), 3.63
(hp, N-C-H, J = 6.8 Hz, 2H), 1.32 (d, CH3 iPr, J = 6.8 Hz, 12H); 13C
{1H} NMR (100.6 MHz, CDCl3): 167.27 (CO), 143.37, 141.20,
138.27, 135.34, 127.39, 127.21, 126.60, 125.56, 48.41 (2CHiPr),
20.81 (4CH3iPr). Anal. Calcd for C19H21Cl2NO: C, 65.15, H, 6.04, N,
4.00 Found: C, 65.31, H, 5.94, N, 4.06.
References
Compound 9c
[1] a) G. Köbrich, P. Buck, Chem. Ber. 1970, 103, 1412; b) G. Köbrich, P.
Buck, Chem. Ber. 1970, 103, 1420.
1
M.p. 106–107ꢀC; H NMR (400 MHz, dmso-d6): d 7.92 (m, Ar, 4H),
[2] W. C. Black, B. Guay, F. Scheuermayer, J. Org. Chem. 1997, 62, 758.
[3] H. Gilman, D. S. Melstrom, J. Am. Chem. Soc. 1948, 70, 4177.
[4] W. E. Parham, L. D. Jones, J. Org. Chem. 1976, 41, 1187.
[5] K. Menzel, E. L. Fisher, L. DiMichelle, D. E. Frantz, T. D. Nelson, M. H.
Kress, J. Org. Chem. 2006, 71, 2188.
[6] a) J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry,
Oxford University Press, Oxford, 2001, p. 301; b) J. Clayden, Organo-
lithiums: Selectivity for Synthesis, Pergamon, Oxford, 2002, p. 286.
[7] C. G. Swain, J. Am. Chem. Soc. 1947, 69, 2306.
[8] S. Luliński, K. Zając, J. Org. Chem. 2008, 73, 7785.
[9] M. Schlosser, E. Castagnetti, Chem. Eur. J. 2002, 8, 799.
[10] R. R. Fraser, S. Savard, Can. J. Chem. 1986, 64, 621.
[11] T. D. Krizan, J. C. Martin, J. Org. Chem. 1982, 47, 2681.
[12] M. Lysen, P. Vedsø, M. Begtrup, J. L. Kristensen, J. Org. Chem. 2006,
71, 2518.
7.74 (s, Ar, H-C-C-Cl, 2H), 0.48 (s, CH3, 9H); 13C{1H} NMR (100.6
MHz, CDCl3): 142.44, 142.39, 141.59, 136.89, 132.78, 127.53,
127.01, 118.46 (CN), 112.14, 2.73 (3CH3). Anal. Calcd for
C16H15Cl2NSi: C, 60.00, H, 4.72, N, 4.37 Found: C, 60.31, H, 4.94,
N, 4.48.
Compound 9d
M.p. 152–153ꢀC; 1H NMR (400 MHz, acetone-d6): d 7.73 (d, Ar, H-C-
C-CO, J = 8 Hz, 2H), 7.64 (s, Ar, H-C-C-Cl, 2H), 7.35 (d, Ar, H-C-Cipso
,
J = 8 Hz, 2H), 3.60 (hp, iPr, J = 7 Hz, 2H), 1.33 (d, iPr, J = 7 Hz, 12H),
0.53 (s, CH3, 9H); 13C{1H} NMR (100.6 MHz, acetone-d6): 167.29
(CO), 144.30, 142.86, 142.82, 137.79, 135.58, 127.96, 127.69,
127.34, 48.93 (2CHiPr), 20.94 (4CH3iPr), 2.94 (3CH3-Si). Anal. Calcd
for C22H29Cl2NOSi: C, 62.55, H, 6.92, N, 3.32 Found: C, 62.71, H,
6.94, N, 3.38.
[13] V. Diemer, J. S. Garcia, F. R. Leroux, F. Colobert, J. Fluorine Chem.
2012, 134, 146.
[14] W. Bauer, P. V. R. Schleyer, J. Am. Chem. Soc. 1989, 111, 7191.
[15] A. I. Meyers, P. D. Pansegran, Tetrahedron Lett. 1983, 24, 4935.
[16] Y. Ito, K. Kobayashi, T. Saegusa, J. Am. Chem. Soc. 1977, 99, 3532.
[17] Y. Ito, K. Kobayashi, N. Seko, T. Saegusa, Bull. Chem. Soc. Jpn. 1984,
57, 73.
Crystal Data for 6d
[18] A. E. H. Wheatley, J. Clayden, I. H. Hillier, A. C. Smith, M. A. Vincent, L.
J. Taylor, J. Haywood, Beilstein J. Org. Chem. 2012, 8, 50.
[19] T. Klis, J. Serwatowski, Acta Cryst. 2009, E65, 2348.
[20] K. Kacprzak, T. Klis, J. Serwatowski, Acta Cryst. 2006, E62, 1308.
[21] K. Kacprzak, T. Klis, J. Serwatowski, Acta Cryst. 2009, E65, 2250.
[22] APEX2, 2010.3-0; Bruker AXS, Madison, WI, 2010.
[23] SAINT, 7.68A, Bruker AXS, Madison, WI, 2010.
[24] a) R. H. Blessing, J. Appl. Cryst. 1989, 22, 396;
b) R. H. Blessing, Acta Cryst. 1995, A51, 33.
[25] G. M. Sheldrick, Acta Cryst. 2008, A64, 112.
Single-crystal data were collected on a Bruker AXS Kappa APEX II
Ultra diffractometer with TXS rotating anode (Mo KR radiation,
l = 0.71073 Å) and multilayer optics and equipped with an Oxford
Cryosystems nitrogen gas flow attachment. The data collection
strategy was optimized and monitored using the appropriate
algorithms applied in the APEX2 program package.[22] Data reduc-
tion and analysis were carried out with the APEX2 suite of pro-
grams (integration was done with SAINT).[23] The data were
wileyonlinelibrary.com/journal/aoc
Copyright © 2012 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. (2012)