Organometallics
Note
Ph2PCH2Cl (9.2 mmol in 60 mL of THF) was slowly added a red
solution of LiP(p-tol)2 (12.5 mmol in 25 mL of THF). The red color
disappeared rapidly at first and then more slowly until at 19 mL the red
color persisted. The solution was stirred for 20 h and the THF removed
by vacuum. Treatment of the resulting oil with ethanol gave a white solid
(1.50 g, 40%).
ACKNOWLEDGMENTS
■
We thank the Camille and Henry Dreyfus Foundation for a
Scholar Fellow grant (SF-98-004) and the National Science
Foundation (CHE-9708342) for support of this work.
REFERENCES
■
(b) A solution prepared from Ph2PCH2SiMe3 (5.5 mmol) and (p-
tol)2PCl (4.9 mmol) was slowly heated to 150 °C over 4 h. The volatile
Me3SiCl was removed by vacuum and the remaining solid crystallized
(1) (a) Keiter, R. L.; Benson, J. W.; Keiter, E. A.; Lin, W.; Jia, Z.; Olson,
D. M.; Brandt, D. E.; Wheeler, J. L. Organometallics 1998, 17, 4291.
(b) Keiter, R. L.; Benson, J. W.; Jia, Z.; Keiter, E. A.; Brandt, D. E.
Organometallics 2000, 19, 4518.
(2) Keiter, R. L.; Ye, P.; Keiter, E. A.; Benson, J. W.; Lin, W.; Brandt, D.
E.; Southern, J. S.; Rheingold, A. L.; Guzei, I.; Wheeler, K. A.; Cary, L. W.
Inorg. Chim. Acta 2010, 364, 176.
(3) Langhans, K.-P.; Stelzer, O; Weferling, N. Chem. Ber. 1990, 123,
995.
(4) (a) Appel, R.; Geisler, K.; Scholer, H.-F. Chem. Ber. 1979, 112, 648.
(b) Grim, S. O.; Barth, R. C. J. Organomet. Chem. 1975, 94, 327.
(c) Campora, J.; Maya, C. M.; Matas, I.; Claasen, B.; Palma, P.; Alvarez,
E. Inorg. Chim. Acta 2006, 359, 3191.
from ethanol (1.9 g, 82%). 31P NMR: AB quartet, δ −22.1, −23.8; 2JPP
126.7.
=
Pentacarbonyl[(diphenylphosphino)(di-p-tolylphosphino)-
methane]tungsten(0), (OC)5W[κ1-PPh2CH2P(p-tol)2] (5) and
(OC)5W[κ1-P(p-tol)2CH2PPh2] (6). To a solution of (OC)5WNH2Ph
(0.83 g, 2.2 mmol in 30 mL of CH2Cl2) was added Ph2PCH2P(p-tol)2
(0.90 g, 2.2 mmol in 30 mL of CH2Cl2). The solution was stirred for
24 h, and the solvent was removed by vacuum. The resulting solid was
dissolved in 10 mL of a 1:1 solution of CH2Cl2 and CH3OH and placed in a
freezer at −15 °C, where a white solid precipitated consisting of 5 and 6 (1.2
g, 82%). IR: νCO 2070 (m), 1980 (w), 1939 (s). The overlapping signals for
the two isomers were slightly broadened and were not resolved. 31P NMR:
(5) McFarlane, H. C. E.; McFarlane, W.; Rycroft, D. S. J. Chem. Soc.,
Dalton Trans. 1976, 1616.
(6) Benson, J. W.; Keiter, E. A.; Keiter, R. L. J. Organomet. Chem. 1995,
495, 77.
5, δ 10.1, δ
−26.1, 2JPP = 104.9, JWP = 245.0; 6, δ −23.9, δ
PPh2
P(tol)2
PPh2
P(tol)2
8.0, 2JPP = 104.0, JWP = 244.4. 13C NMR (CO): 5, δcis 205.6 (dd, 2JPC = 7.1,
4JPC = 2.9), δtrans 208.0 (d, 2JPC = 21.7); 6, δcis 205.7 (dd, 2JPC = 7.0, 4JPC
=
(7) (a) Mukerjee, S. L.; Lang, R. F.; Ju., T.; Kiss, G.; Hoff, C. D.; Nolan,
3.2), δtrans 208.2 (d, 2JPC = 21.9). Pure white crystals of 5 were obtained by
dissolving the isomer mixture in CH2Cl2, adding a layer of CH3OH, and
refrigerating for 3 weeks. Mp: 168−170 °C dec. IR: νCO 2071 (m), 1981
(w), 1940 (s). Anal. Calcd for C32H26O5P2W: C, 52.20; H, 3.60; P, 8.41.
Found: C, 51.99; H, 3.44; P, 8.80.
Pentacarbonyl[bis(di-p-tolylphosphino)methane]tungsten-
(0), (OC)5W[κ1-P(p-tol)2CH2P(p-tol)2] (8). This compound was
prepared in 58.8% yield from (OC)5WNH2Ph and (p-tol)2PCH2P(p-
tol)2 by the same method used for 5 and 6. IR: νCO 2070 (m), 1979 (w),
1938 (s). 31P NMR: δPW 7.89, δP −25.7, 2JPP = 102.8, JWP = 243.4. Anal.
Calcd for C34H30O5P2W: C, 53.42; H, 3.96; P, 8.10. Found: C, 53.19; H,
3.80; P, 7.65.
[(Chloromethyl)diphenylphosphine]pentacarbonyltungsten(0),
(OC)5WPPh2CH2Cl (9). (a) This compound was obtained from the
reaction of (OC)5WNH2Ph (1.0 g, 2.4 mmol) with Ph2PCH2Cl (0.56 g,
2.4 mmol) in toluene (25 mL). Addition of an equal volume of methanol
followed by refrigeration led to 0.64 g of crystalline product (45%). IR:
νCO 2074 (m), 1984 (w), 1942(s). 31P NMR: δP 20.7, JWP = 246.3. Anal.
Calcd for C18H12O5PWCl: C, 38.71; H, 2.17; P, 5.55. Found: C, 38.30;
H, 1.70; P, 5.40.
(b) 9 was also formed from the reaction of Li[(OC)5WPPh2] with
CH2Cl2. Similarly, (OC)5WPPh2CH2Br (10) was obtained. IR: νCO
2073 (m), 1982 (w), 1943 (s). 31P NMR: δP 19.4, JWP = 245.8. However,
in the preparation of both the chloride and bromide complexes by this
method, (OC)5WPPh2Me5 was formed as a side product (25%). 31P
NMR: δP −3.27, JWP = 237.0.
S. P. Inorg. Chem. 1992, 31, 4885. (b) Dias, P. B.; Minas da Pierdade, M.
E.; Martinho Simoes, J. A. Coord. Chem. Rev. 1994, 135/136, 737.
̃
(c) Atwood, J. D. Inorganic and Organometallic Reaction Mechanisms, 2nd
ed.; Wiley-VCH: New York, 1997.
(8) Benson, J. W.; Keiter, R. L.; Keiter, E. A.; Rheingold, A. L.; Yap, G.
P. A.; Mainz, V. V. Organometallics 1998, 17, 4275.
(9) (a) Bondi, A. J. Phys. Chem. 1964, 68, 441. (b) Huheey, J. E.; Keiter,
E. A.; Keiter, R. L. Inorganic Chemistry: Principles of Structure and
Reactivity, 4th ed.; HarperCollins: New York, 1993.
(10) Keiter, R. L.; Rheingold, A. L.; Hamerski, J. J.; Castle, C. K.
Organometallics 1983, 2, 1635.
(11) (a) Darensbourg, D. J.; Wiegreffe, H. P. Inorg. Chem. 1990, 29,
592. (b) Darensbourg, D. J.; Joyce, J. A.; Bischoff, C. J.; Reibenspies, J. H.
Inorg. Chem. 1991, 30, 1137. (c) Phelps, A. L.; Rampersad, M. V.; Fitch,
S. B.; Darensbourg, M. Y.; Darensbourg, D. J. Inorg. Chem. 2006, 45, 119.
(d) Jeffery, S. P.; Singleton, M. L.; Reibenspies, J. H.; Darensbourg, M. Y.
Inorg. Chem. 2007, 46, 179.
(12) Sowa, J. R.; Angelici, R. J. Inorg. Chem. 1991, 30, 3534.
(13) Darensbourg, D. J. Adv. Organomet. Chem. 1982, 21.
(14) Allman, T.; Goel, R. G. Can. J. Chem. 1982, 60, 716.
(15) (a) Grim, S. O.; Yankowsky, A. W. J. Org. Chem. 1977, 18, 1236.
(b) Archer, L. J.; George, T. A. Inorg. Chem. 1979, 18, 2079.
(16) Montgomery, R. E.; Quin, L. D. J. Org. Chem. 1965, 30, 2293.
(17) Angelici, R. J.; Malone, M. D. Inorg. Chem. 1967, 6, 1731.
(18) Hao, L.; Jobe, I. R.; Vittal, J. J.; Puddephatt, R. J. Organometallics
1995, 14, 2781.
(19) Maitra, K.; Wilson, W. L.; Jemin, M. M.; Yeung, C.; Rader, W. S.;
Redwine, K. D.; Striplin, D. P.; Catalano, V. J.; Nelson, J. H. Synth. React.
Inorg. Met.-Org. Chem. 1996, 26, 967.
Reaction Rates and Equilibrium Constants. Into an NMR tube
was placed 30 mg of pure 5 or a mixture of 5 and 6, dissolved in 0.5 mL of
CDCl3. The tube was vacuum-sealed and placed into a constant-
temperature bath. 31P NMR spectra were recorded periodically for each
of three temperatures: 25, 40, and 55 °C. The NMR probe was brought
to the appropriate temperature before each spectrum was collected. The
ratio of the two isomers was determined by integration of the
phosphorus signals.1a Equilibrium was assumed to have been reached
when the ratio no longer changed with time.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
4622
dx.doi.org/10.1021/om300092x | Organometallics 2012, 31, 4619−4622