SCHEME 1. Retr osyn th esis of
5-P h en yl-1,4-ben zod ia zep in e Der iva tives
Exp ed ien t On e-P ot Syn th esis of Novel
Ch ir a l 2-Su bstitu ted
5-P h en yl-1,4-ben zod ia zep in e Sca ffold s fr om
Am in o Acid -Der ived Am in o Nitr iles
Susana Herrero, M. Teresa Garc´ıa-Lo´pez, and
Rosario Herranz*
Instituto de Qu´ımica Me´dica (CSIC), J uan de la Cierva 3,
E-28006 Madrid, Spain
rosario@iqm.csic.es
tuted 5-phenyl-1,4-benzodiazepine derivatives 1 and 2,
from amino acid-derived amino nitriles 3, as shown in
the retrosynthetic Scheme 1. This strategy would involve
the synthesis of the 2,3-dihydro-1H-1,4-benzodiazepines
2, by cyano reduction and reductive cyclization of amino
nitriles 3, which could be prepared by adapting our
methodology for the synthesis of Ψ[CH(CN)NH]pseudopep-
tides from R-amino aldehydes.7-10 The reduction of 2,
followed by functionalization at position 4, would give
access to the 2,3,4,5-tetrahydro-1H-1,4-benzodiazepine
derivatives 1. We have studied and reported herein the
applicability of retrosynthetic Scheme 1 to the prepara-
tion of phenylalanine- and tryptophan-derived 1,4-ben-
zodiazepines.
Initially, the synthesis of the starting amino nitriles
7a and 7b, by a modified Strecker reaction of 2-ami-
nobenzophenone (5) with the N-protected R-amino alde-
hydes N-Boc-L-Phe-H (4a ) or N-Boc-L-Trp-H (4b) and
trimethylsilyl cyanide (TMSCN) (Scheme 2), was at-
tempted by applying the reaction conditions developed
for the synthesis of Ψ[CH(CN)NH]pseudopeptides,7 which
involved reaction of an R-amino aldehyde with an amino
acid in the presence of ZnCl2 at -20 °C for 1 h, followed
by in situ reaction with TMSCN for 24 h at 0 °C.
However, under these conditions, amino nitriles 7a ,b
Received March 5, 2003
Abstr a ct: An efficient and stereocontrolled synthesis of
phenylalanine- and tryptophan-derived 5-phenyl-1,4-benzo-
diazepines is described. This new methodology involves, as
a key step, the synthesis of 5-phenyl-2,3-dihydro-1H-1,4-
benzodiazepines by a one-pot cyano reduction and reductive
cyclization of the appropriate amino nitrile, which were
obtained via a modified Strecker reaction of N-protected
R-amino aldehydes with 2-aminobenzophenone and tri-
methylsilyl cyanide. The subsequent reduction of these 2,3-
dihydro-1H-1,4-benzodiazepines, followed by regioselective
alkylation or acylation at position 4, led to 2,4-disubstituted-
5-phenyl-2,3,4,5-tetrahydro-1H-1,4-benzodiazepine.
Because of the wide range of biological activities
displayed by benzodiazepine-derived compounds, benzo-
diazepine scaffolds are considered among the most im-
portant privileged structures for drug discovery.1 Par-
ticularly, 5-aryl-1,4-benzodiazepine templates are recurrent
structures in anxiolytics, hypnotics and anticonvulsants,2
anti-HIV agents,3 and antiarrhythmics.4 Furthermore,
diverse 1,4-benzodiazepine derivatives have also been
used as constrained dipeptide mimics or nonpeptide
scaffolds in the search of peptidomimetics either as
enzyme inhibitors5 or as ligands of diverse G-protein
coupled receptors6 such as cholecystokinin, fibrinogen,
integrin, vasopressin, oxytocin, bradykinin, or k-opioid
receptors.
(6) (a) De Tullio, P.; Delarge, J .; Pirotte, B. Exp. Opin. Invest. Drugs
2000, 9, 129. (b) Keenan, R. M.; Callahan, J . F.; Samanen, J . M.;
Bondinell, W. E.; Calvo, R. R.; Chen, L.; DeBrosse, C.; Eggleston, D.
S.; Haltiwanger, R. C.; Hwang, S. M.; J akas, D. R.; Ku, T. W.; Miller,
W. H.; Newlander, K. A.; Nichols, A.; Parker, M. F.; Southhall, L. S.;
Uzinskas, I.; Vasko-Moser, J . A.; Venslavsky, J . W.; Wong, A. S.;
Huffman, W. F. J . Med. Chem. 1999, 42, 545. (c) Miller, W. H.; Alberts,
D. P.; Bhatnagar, P. K.; Bondinell, W. E.; Callahan, J . F.; Calvo, R.
R.; Cousins, R. D.; Erhard, K. F.; Heerding, D. A.; Keenan, R. M.; Kwon,
C.; Manley, P. J .; Newlander, K. A.; Ross, S. T.; Samanen, J . M.;
Uzinskas, I. N.; Venslavsky, J . W.; Yuan, C. C.; Haltiwanger, R. C.;
Gowen, M.; Hwang, S. M.; J ames, I. E.; Lark, M. W.; Rieman, D. J .;
Stroup, G. B.; Azzarano, L. M.; Salyers, K. L.; Smith, B. R.; Ward, K.
W.; J ohanson, K. O.; Huffman, W. F. J . Med. Chem. 2000, 43, 22. (d)
Albright, J . D.; Reich, M. F.; Delos Santos, E. G.; Dusza, J . P.; Sum,
F. W.; Venkatesan, A. M.; Coupet, J .; Chan, P. S.; Ru, X.; Mazandarani,
H.; Bailey, T. J . Med. Chem. 1998, 41, 2442. (e) Wyatt, P. G.; Allen,
M. J .; Chilcott, J .; Hickin, G.; Miller, N. D.; Woollard, P. M. Bioorg.
Med. Chem. Lett. 2001, 11, 130. (f) Dziadulewicz, E. K.; Brown, M. C.;
Dunstan, A. R.; Lee, W.; Said, N. B.; Garratt, P. J . Bioorg. Med. Chem.
Lett. 1999, 9, 463. (g) Romer, D.; Buscher, H. H.; Hill, R. C.; Maurer,
R.; Petcher, T. J .; Zeugner, H.; Benson, W.; Finner, E.; Milkowski, W.;
Thies, P. W. Nature 1982, 298, 759.
(7) Herranz, R.; Sua´rez-Gea, M. L.; Vinuesa, S.; Garc´ıa-Lo´pez, M.
T. J . Org. Chem. 1993, 58, 5186.
(8) Herranz, R.; Sua´rez-Gea, M. L.; Garc´ıa-Lo´pez, M. T.; Gonza´lez-
Mun˜iz, R.; J ohansen, N. L.; Madsen, K.; Thogersen, H.; Suzdak, P.
Tetrahedron Lett. 1993, 34, 8357.
(9) Herrero, S.; Sua´rez-Gea, M. L.; Gonza´lez-Mun˜iz, R.; Garc´ıa-
Lo´pez, M. T.; Herranz, R.; Ballaz, S.; Barber, A.; Fortun˜o, A.; Del R´ıo,
J . Bioorg. Med. Chem. Lett. 1997, 7, 855.
(10) Herrero, S.; Garc´ıa-Lo´pez, M. T.; Latorre, M.; Cenarruzabeitia,
E.; Del R´ıo, J . Herranz, R. J . Org. Chem. 2002, 67, 3866.
In the context of our current interest in methodologies
for generating peptidomimetics, particularly directed
toward the search of new cholecystokinin receptor ligands,
we envisioned a versatile access to novel chiral 2-substi-
(1) (a) Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R. M.;
Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Veber, D. F.;
Anderson, P. S.; Chang, R. S. L.; Lotti, V. J .; Cerino, D. J .; Chen, T.
B.; Kling, P. J .; Kunkel, K. A.; Springer, J . P.; Hirshfield, J . J . Med.
Chem. 1988, 31, 2235. (b) Patchett, A. A.; Nargund, R. P. Annu. Rep.
Med. Chem. 2000, 35, 289.
(2) (a) Davidson, J . R. J . Clin. Psychiatry 2001, 62, 46. (b) McCall,
W. V. J . Clin. Psychiatry 2001, 62, 27. (c) Hanley, D. F.; Pozo, M. Int.
J . Clin. Pract. 2000, 54, 30.
(3) Hsu, M. C.; Schutt, A. D.; Holly, M.; Slice, L. W.; Sherman, M.
I.; Richman, D. D.; Potash, M. J .; Volsky, D. J . Science 1991, 254, 1799.
(4) Selnick, H. G.; Liverton, N. J .; Baldwin, J . J .; Butcher, J . W.;
Claremon, D. A.; Elliott, J . M.; Freidinger, R. M.; King, S. A.; Libby,
B. E.; McIntyre, C. J .; Pribush, D. A.; Remy, D. C.; Smith, G. R.;
Tebben, A. J .; J urkiewicz, N. K.; Lynch, J . J .; Salata, J . J .; Sanguinetti,
M. C.; Siegl, P. K.; Slaughter, D. E.; Vyas, K. J . Med. Chem. 1997, 40,
3865.
(5) (a) J ames, G. L.; Goldstein, J . L.; Brown, M. S.; Rawson, T. E.;
Somers, T. C.; McDowell, R. S.; Crowley, C. W.; Lucas, B. K.; Levinson,
A. D.; Marsters, J . C. Science 1993, 260, 1937. (b) Liskamp, M. J .
Angew. Chem., Int. Ed. Engl. 1994, 33, 305.
10.1021/jo034286c CCC: $25.00 © 2003 American Chemical Society
Published on Web 05/02/2003
4582
J . Org. Chem. 2003, 68, 4582-4585