T. Weidlich et al.
[6] N. J. Anthony, J. J. Lim, D.-S. Su, M. R. Wood, patent no. WO/2005/
004810, 2005.
[7] J. Wasley, G. J. Rosenthal, X. Sun, S. Strong, J. Qiu, patent no. WO/
2010/019903, 2010.
[8] O. Koepler, S. Laschat, A. Baro, P. Fischer, B. Miehlich, M. Hotfilder,
C. le Viseur, Eur. J. Org. Chem. 2004, 3611.
12.0 mmol of 8, respectively) was subsequently added. The
resulting reaction mixture was heated to 100ꢀC for 15 h or to
200ꢀC for 6 h. The final composition of the reaction mixture after
evaporation of the volatiles was monitored by GC and GC-MS.
[9] P. Jager, C. N. Rentzea, H. Kieczka, in Ullmann’s Encyclopedia of
Industrial Chemistry (5th edn), VCH, Weinheim, 1986, p. 51.
[10] a) P. Majer, R. S. Randad, J. Org. Chem. 1994, 59, 1937; b) R. A. Batey,
V. Santhakumar, C. Yoshina-Ishii, S. Taylor, Tetrahedron Lett. 1998,
39, 6267.
[11] S. Ozaki, Chem. Rev. 1972, 72, 457.
[12] A. E. Gurgiolo, US Patent 4268683, 1981.
[13] Z. H. Fu, Y. Ono, J. Mol. Catal. 1994, 91, 399.
[14] P. Švec, E. Černošková, Z. Padělková, A. Růžička, J. Holeček,
J. Organomet. Chem. 2010, 695, 2475.
[15] P. Švec, Z. Padělková, A. Růžička, T. Weidlich, L. Dušek, L. Plasseraud,
J. Organomet. Chem. 2011, 696, 676.
[16] A. Růžička, V. Pejchal, J. Holeček, A. Lyčka, K. Jacob, Collect. Czech.
Chem. Commun. 1998, 63, 977.
[17] B. Jousseaume, P. Villeneuve, J. Chem. Soc. Chem. Commun. 1987, 513.
[18] A. Růžička, R. Jambor, J. Brus, I. Císařová, J. Holeček, Inorg. Chim. Acta
2001, 323, 163.
Conclusion
First, some well-known organotin(IV) halides and one dinuclear
monoorganotin(IV) trifluoroacetate bearing the C,N-chelating
ligand(s) were employed as catalysts for the derivatization of
DEC and DMC with 2-N-phenylaminoethanol, 4-t-butylaniline and
4-bromoaniline. These reactions, catalyzed by 1, 3 and 7 (which
exhibited the best catalytic activity in almost all reactions studied),
provided corresponding substituted carbonates, carbamates,
lactam or substituted urea as depicted in Schemes 2–4 in
reasonable yields. When these reactions were carried out under
the same conditions without the presence of the catalyst, no
formation of desired products was observed, as expected. In the
second part of this work we investigated the catalytic activity of
4 and 7 with the reactions of DMC with p-substituted phenols.
Studied reactions gave corresponding anisoles and mixed alkyl-aryl
carbonates in varying yields depending on the substrate, reaction
time and temperature used. It was found that compounds 4 and
7 reveal promising catalytic activity when compared to the
standard base K2CO3 catalyst, which was used at 120 times higher
amounts relative to 4 and 7 in all cases. In addition, an alternative
procedure for the quick preparation of 2 and 4 with excellent yields
has been described.
[19] R. A. Varga, A. Rotar, M. Schürmann, K. Jurkschat, C. Silvestru, Eur. J.
Inorg. Chem. 2006, 1475.
[20] P. Švec, Z. Padělková, I. Císařová, A. Růžička, J. Holeček, Main Group
Met. Chem. 2008, 31, 305.
[21] P. Novák, Z. Padělková, I. Císařová, L. Kolářová, A. Růžička, J. Holeček,
Appl. Organomet. Chem. 2006, 20, 226.
[22] M. Fan, P. Zhang, Energ. Fuel. 2007, 21, 633.
[23] H. Finkelstein, Ber. Dtsch. Chem. Ges. 1910, 43, 1528.
[24] T. Taniguchi, N. Goto, H. Ishibashi, Tetrahedron Lett. 2009, 50, 4857.
[25] G. S. Poindexter, D. A. Owens, P. L. Dolan, E. Woo, J. Org. Chem. 1992,
57, 6257.
[26] K. Kunde, K.-J. Herd, European Patent Application 632022, 1995.
[27] C. Jouitteau, P. Leperchec, A. Forestiere, B. Sillion, Tetrahedron Lett.
1980, 21, 1719.
[28] K. Orito, M. Miyazawa, T. Nakamura, A. Horibata, H. Ushito, H. Nagasaki,
M. Yuguchi, S. Yamashita, T. Yamazaki, M. Tokuda, J. Org. Chem. 2006,
71, 5951.
Acknowledgements
The authors would like to thank the Grant Agency of the
Czech Republic (grant no. 104/09/0829) for the financial support
of this work.
[29] a) A. Růžička, R. Jambor, I. Císařová, J. Holeček, Chem. Eur. J. 2003, 9,
2411; b) A. Růžička, L. Dostál, R. Jambor, V. Buchta, J. Brus, I. Císařová,
M. Holčapek, J. Holeček, Appl. Organomet. Chem., 2002, 16, 315; c) R.
Jambor, I. Císařová, A. Růžička, J. Holeček, Acta Cryst. Sect. C 2001, 57,
373; d) P. Novák, I. Císařová, L. Kolářová, A. Růžička, J. Holeček,
J. Organomet. Chem. 2007, 692, 4287; e) B. Kašná, R. Jambor, L. Dostál,
A. Růžička, I. Císařová, J. Holeček, Organometallics 2004, 23, 5300; f)
J. Turek, Z. Padělková, Z. Černošek, M. Erben, A. Lyčka, M. S. Nechaev,
I. Císařová, A. Růžička, J. Organomet. Chem. 2009, 694, 3000.
[30] R. Betz, P. Klufers, Acta Crystallogr. E 2007, 63, o4922.
[31] a) K. C. Nicolaou, A. Krasovskiy, V. E. Trepanier, D. Y. K. Chen, Angew.
Chem. Int. Ed. 2008, 47, 4217; b) K. C. Nicolaou, A. Krasovskiy, U.
Majumder, V. E. Trepanier, D. Y. K. Chen, J. Am. Chem. Soc. 2009,
131, 3690.
[32] M. V. Vovk, L. I. Samarai, Ukr. Khim. Zh. (Russ. Ed.) 1990, 56, 1313.
[33] G. G. Muccioli, J. Wouters, C. Charlier, G. K. E. Scriba, T. Pizza, P. Di Pace,
P. De Martino, W. Poppitz, H. H. Poupaert, D. M. Lambert, J. Med. Chem.
2006, 49, 872.
[34] a) G. Teverovskiy, D. S. Surry, S. L. Buchwald, Angew. Chem. Int. Ed.
2011, 50, 7312; b) Y. Yang, J. K. Coward, J. Org. Chem. 2007, 72,
5748; c) C. Lai, B. J. Backes, Tetrahedron Lett. 2007, 48, 3033; d)
A. R. Renslo, Org. Lett. 2005, 7, 2627.
References
[1] a) M. Selva, P. Tundo, Acc. Chem. Res. 2002, 35, 706; b) M. Selva, Pure
Appl. Chem. 2007, 79, 1855.
[2] a) M. Selva, C. A. Marques, P. Tundo, J. Chem. Soc., Perkin Trans. 1
1994, 10, 1323; b) A. Bomben, M. Selva, P. Tundo, L. Valli, Ind. Eng.
Chem. Res. 1999, 38, 2075; c) M. Selva, Synthesis 2003, 18, 2872; d)
M. Selva, P. Tundo, T. Foccardi, J. Org. Chem. 2005, 70, 2476; e)
M. Selva, P. Tundo, J. Org. Chem. 2006, 71, 1464; f) M. Selva, P. Tundo,
A. Perosa, D. Brunelli, Green Chem. 2007, 9, 463; g) M. Selva,
E. Militello, M. Fabris, Green Chem. 2008, 9, 73; h) M. Fabris, V. Lucchini,
M. Noe, A. Perosa, M. Selva, Chem. Eur. J. 2009, 15, 12273.
[3] a) P. Adams, F. A. Baron, Chem. Rev. 1965, 65, 567; b) A. Mateen,
S. Chapalamadugu, B. Kashar, A. R. Batthi, in Biological Degradation
and Bioremediation of Toxic Chemicals (Ed.: G. R. Chaudry), Dioscorides
Press, Portland, OR, 1994, p. 198; c) W. Tai-Teh, J. Huang,
N. D. Arrington, G. M. Dill, J. Agric. Food Chem. 1987, 35, 817; d) T. Kato,
K. Suzuki, J. Takahashi, K. J. Kamoshita, Pest. Sci. 1984, 9, 489.
[4] a) P. N. Ibrahim, G. Wu, J. Lin, W. Spevak, H. Cho, T. Ewing, C. Zhang,
patent no. WO2011079133, 2011; b) B. Fink, L. Chen, A. Gavai, L. He,
S.-H. Kim, A. Nation, Y. Zhao, L. Zhang, patent no. WO2010042699,
2010; c) A. Makriyannis, S. P. Nikas, S. O. Alapafuja, V. G. Shukla,
patent no. WO2008013963, 2008.
[35] a) T. Sakamoto, Y. Kondo, A. Yasuhara, H. Yamanaka, Heterocycles
1990, 31, 219; b) M. Verma, K. N. Singh, E. D. Clercq, Heterocycles
2006, 68, 11.
[36] H. Lee, J. Y. Bae, O.-S. Kwon, S. J. Kim, S. D. Lee, H. S. Kim, J. Organomet.
Chem. 2004, 689, 1816.
[5] X. Zhao, Y. Wang, S. Wang, H. Yang, J. Zhang, Ind. Eng. Chem. Res.
[37] R. W. Martin, GB Patent 725782 and US Patent 2710305, 1955.
[38] E. Fuhrmann, J. Talbiersky, Org. Process Res. Dev. 2005, 9, 206.
2002, 41, 5139.
wileyonlinelibrary.com/journal/aoc
Copyright © 2012 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. 2012, 26, 293–300