thiols has been reported. In this protocol, primary, secondary,
aromatic, and aliphatic alcohols are transformed to generate the
a-sulfenylated carbonyl compounds in good to excellent yields.
When a secondary alcohol is used, an a-sulfenylated ketone is
generated and when a primary alcohol is used, an a-sulfenylated
aldehyde is obtained. Mechanistic studies showed that gold(I)
chloride is the active catalyst. The reaction proceeds through an
initial regioselective thiol attack at the triple bond b to the
alcohol. Protodeauration generates an alkene as a mixture of
Scheme 5 Investigation of intramolecularity of the hydrogen migra-
tion by cross-over experiment.
diastereomers.
A rate-limiting gold(I)-catalyzed 1,2-hydride
and a secondary isotope effect, the kinetic isotope effect was
determined indirectly (see ESIz for experimental details and
determination of the KIE). Given this, the observed primary
migration generates the a-sulfenylated carbonyl compounds.
We thank Wenner-Gren foundation, Stiftelsen Olle Engqvist
Byggmastare, and Vetenskapsradet for financial support. We thank
Professors J.-E. Backvall and O. Matsson for valuable discussions.
deuterium kinetic isotopic effect was determined to be kH/kD
=
8.4 ꢀ 0.2 and the observed secondary deuterium kinetic isotopic
effect was determined to be kH/kD = 1.17 ꢀ 0.1.10
During the course of the reaction a diastereomeric mixture
of 5 (Z : E = 7 : 1) was observed in the reaction mixture
(Scheme 6).11 We were able to isolate and fully characterise
intermediate 5 in 30% yield.12
Notes and references
1 (a) R. J. Cremlyn, An Introduction to Organo-Sulfur Chemistry,
Wiley & Sons, New York, 1996; (b) T. Kondo and T.-A. Mitsudo,
Chem. Rev., 2000, 100, 3205; (c) Organosulfur Chemistry in Asymmetric
Synthesis, ed. T. Toru and C. Bolm, Wiley & Sons, New York, 2008.
2 (a) B. M. Trost, Chem. Rev., 1978, 78, 363; (b) B. M. Trost,
Acc. Chem. Res., 1978, 11, 453.
3 (a) M. E. Kuehne, J. Org. Chem., 1963, 28, 2124; (b) S. Murai,
Y. Kuroki, K. Hasegawa and S. Tsutsumi, Chem. Commun., 1972,
946; (c) E. Okragla, S. Demkowicz, J. Rachon and D. Witt,
Synthesis, 2009, 1720.
4 (a) N. Bongers and N. Krause, Angew. Chem., Int. Ed., 2008,
47, 2178; (b) D. J. Gorin, B. D. Sherry and F. D. Toste, Chem.
Rev., 2008, 108, 3351; (c) E. Jimenez-Nunez and A. M. Echavarren,
Chem. Rev., 2008, 108, 3326; (d) Z. Li, C. Brouwer and C. He, Chem.
Rev., 2008, 108, 3239; (e) A. Arcadi, Chem. Rev., 2008, 108, 3266;
(f) J. Muzart, Tetrahedron, 2008, 64, 5815; (g) D. J. Gorin and
F. D. Toste, Nature, 2007, 446, 395; (h) A. Furstner and
P. W. Davies, Angew. Chem., Int. Ed., 2007, 46, 3410; (i) A. S.
K. Hashmi, Chem. Rev., 2007, 107, 3180; (j) A. S. K. Hashmi and
G. J. Hutchings, Angew. Chem., Int. Ed., 2006, 45, 7896; (k) A. S.
K. Hashmi and M. Rudolph, Chem. Soc. Rev., 2008, 37, 1766;
(l) T. C. Boorman and I. Larrosa, Chem. Soc. Rev., 2011, 40, 1910.
5 (a) N. Ljungdahl and N. Kann, Angew. Chem., Int. Ed., 2009,
48, 642 (Angew. Chem., 2009, 121, 652); (b) S. Biswas and J. S. M.
Samec, unpublished work; (c) F. Howard, S. Sawadjoon and
J. S. M. Samec, Tetrahedron Lett., 2010, 51, 4208.
Scheme 6 Intermediate 5 formed in the AuCl catalysed reaction of 1a
and 2a.
Compound 5 was tested as an intermediate in the transfor-
mation to 3f (Scheme 7). Gold(I) chloride transformed 5 to
generate 3f in full conversion within 16 hours using standard
reaction conditions. Attempts to perform this reaction step
using acetic acid or 2a as Brønsted acids were not successful.
6 (a) R. A. Sheldon, Pure Appl. Chem., 2000, 72, 1233;
(b) B. M. Trost, Science, 1991, 254, 1471.
7 a-Thio carbonyls have been prepared from propargylic sulfoxides
via oxygen transfer and 1,2-thio migration, see: N. D. Shapiro and
F. D. Toste, J. Am. Chem. Soc., 2007, 129, 4160.
8 M. T. Raisanen, N. Runeberg, M. Klinga, M. Nieger, M. Bolte,
P. Pyykko, M. Leskela and T. Repo, Inorg. Chem., 2007, 46, 9954.
9 L. Gong, Y. Lin, T. B. Wen and H. Xin, Organometallics, 2009,
28, 1101.
10 See ESIz for rate determination and kinetic isotope effects. For
review of kinetic isotope effect; (a) M. Gomez-Gallego and
M. A. Sierra, Chem. Rev., 2011, 111, 4857. For the kinetic isotope
effect of 1,2-hydride shifts;; (b) A. E. Hours and J. K. Snyder,
Organometallics, 2008, 27, 410.
Scheme 7 Testing 5, as an intermediate to generate 3f.
We propose a mechanism where gold(I) coordinates to the triple
bond of 1a and thiophenol attacks regioselectively the triple bond
in the b-position of the alcohol 1a. Protodeauration generates 5 as
an intermediate in the reaction. A rate-limiting gold(I)-mediated
1,2-hydride migration13 generates 3f from 5 (Scheme 8).
11 Similar diastereomeric ratios have been reported for gold(I)-cata-
lyzed addition of methanol to diphenylacetylene, see: J. H. Teles,
S. Brode and M. Chabanas, Angew. Chem., Int. Ed., 1998, 37, 1415.
12 For
gold-catalyzed
hydrothiolation
reactions,
see:
(a) M. Menggenbateer, M. Narsireddy, G. Ferrara, N. Nishina,
T. Jin and Y. Yamamoto, Tetrahedron Lett., 2010, 51, 4627;
(b) A. Corma, C. Gonzalez-Arellano, M. Iglesias and
F. Sanchez, Appl. Catal., A, 2010, 375, 49.
13 For gold promoted pinacol shift, see: (a) J. P. Markham,
S. T. Staben and F. D. Toste, J. Am. Chem. Soc., 2005,
127, 9708; (b) F. Kleinbeck and F. D. Toste, J. Am. Chem. Soc.,
2009, 131, 9178; (c) X. Huang and L. Zhang, J. Am. Chem. Soc.,
2007, 129, 6398; (d) K.-D. Kim, H.-S. Yeom, S. Shin and S. Shin,
Tetrahedron, 2012, DOI: 10.1016/j.tet.2012.03.018, in press.
Scheme 8 Proposed mechanism for the gold chloride catalysed a-
sulfenylation of propargylic alcohols.
In conclusion, a novel gold-catalyzed route to a-sulfenylated
carbonyl compounds from propargylic alcohols and aromatic
c
6588 Chem. Commun., 2012, 48, 6586–6588
This journal is The Royal Society of Chemistry 2012