J. Am. Chem. Soc., 2004, 126, 11798–11799; (e) P. Boudjouk,
M. P. Remington, D. G. Grier, W. Triebold and B. R. Jarabek,
Organometallics, 1999, 18, 4534–4537.
2 (a) C. Erk, A. Berger, J. Wendorff and S. Schlecht, Dalton Trans.,
2010, 39, 11248–11254; (b) K. Fang Hsu, S. Loo, F. Guo, W. Chen,
J. S. Dyck, C. Uher, T. Hogan, E. P. Polychroniadis and
M. Kanatzidis, Science, 2004, 303, 818–821; (c) S. Schlecht,
M. Budde and L. Kienle, Inorg. Chem., 2002, 41, 6001–6005;
(d) G. Barone, T. G. Hibbert, M. F. Mahon, K. C. Molloy,
L. S. Price, I. P. Parkin, A. M. E. Hardy and M. N. Field,
J. Mater. Chem., 2001, 2, 464–468; (e) Y. Cheng, T. J. Emge and
J. G. Brennan, Inorg. Chem., 1996, 35, 342–346; (f) CRC Handbook
of Thermoelectrics, ed. D. M. Rowe, CRC Press, New York, 1995;
(g) D. H. R. Barton and H. Dadoun, New J. Chem., 1982, 6, 53–57.
3 (a) K. Tani, R. Yamada, T. Kanda, M. Suzuki, S. Kato and T. Murai,
Organometallics, 2002, 21, 1487–1492; (b) U. Herzog and G. Rheinwald,
J. Organomet. Chem., 2001, 627, 23–36; (c) K. Merzweiler and H. Kraus,
Z. Naturforsch., B, 1994, 49, 621–626; (d) I. G. Dance, Polyhedron, 1986,
5, 1037–1104; (e) B. Mathiasch, J. Organomet. Chem., 1980, 194, 37–43;
(f) A. Blecher and M. Drager, Angew. Chem., 1979, 91, 740 (Angew.
¨
Chem., Int. Ed. Engl., 1979, 18, 677); (g) H. Puff, R. Gattermayer,
R. Hundt and R. Zimmer, Angew. Chem., 1977, 89, 556–557 (Angew.
Chem., Int. Ed. Engl., 1977, 16, 547–548); (h) H. Schumann, K.-F. Thom
and M. Schmidt, J. Organomet. Chem., 1964, 2, 361–366.
4 (a) H. Schumann, Z. Anorg. Allg. Chem., 1967, 354, 192–200;
(b) B. Menzebach and P. Bleckmann, J. Organomet. Chem., 1975,
91, 291–294; (c) H.-J. Jacobsen and B. Krebs, J. Organomet. Chem.,
Fig. 4 Molecular structure of 5; thermal ellipsoids represent a 50%
probability level, hydrogen atoms are not shown, selected bond lengths
(pm) and angles (1): Sn(1)–Te(1) 286.2(2), Sn(1)–Te(2) 288.6(1), Sn(1)–Te(3)
296.1(1), Sn(2)–Te(3) 290.3(1), Sn(2)–Te(3)0 292.6(1), Te(2)–Sn(2)0 313.6(8),
Te(1)–Sn(2) 330.4(8), Te(1)–Si(1) 253.5(2), Te(2)–Si(5) 235.9(2);
Te(1)–Sn(1)–Te(2) 83.72(2), Te(1)–Sn(1)–Te(3) 96.52(3), Te(2)–Sn(1)–Te(3)
94.96(2), Sn(1)–Te(3)–Sn(2) 90.10(3), Sn(1)–Te(3)–Sn(2)0 87.62(2), Te(3)–
Sn(2)–Te(3)0 90.71(2), Sn(2)–Te(3)0–Sn(2)0 89.29(1).
1977, 136, 333–338; (d) M. Drager, A. Blecher, H.-J. Jacobsen and
¨
B. Krebs, J. Organomet. Chem., 1978, 161, 319–325; (e) H. Puff,
G. Bertram, B. Ebeling, M. Franken, R. Gattermayer, R. Hundt,
W. Schuh and R. Zimmer, J. Organomet. Chem., 1989, 379, 235–245.
5 A. L. Seligson and J. Arnold, J. Am. Chem. Soc., 1993, 115, 8214–8220.
6 (a) C. D. W. Jones, F. J. DiSalvo and R. C. Haushalter, Inorg. Chem.,
1998, 37, 821–823; (b) H. Borrmann, J. Campbell, D. Dixon,
H. Mercier, A. Pirani and G. J. Schrobilgen, Inorg. Chem., 1998, 37,
6656–6674; (c) C.-W. Park, R. Salm and J. Ibers, Can. J. Chem., 1995,
temperature range of 210–290 1C with an overall mass loss of
66.7% (calculated for the formation of SnTe: 69.7%). A different
behaviour was observed for compound 3, which shows a first
decomposition step between 50 and 751C with a mass loss of
11.9%. This corresponds to the elimination of one tBu2PhSi
group (calc. 12.2%). Further decomposition occurs in the
temperature range of 190 to 250 1C with a mass loss of 51.93%
and indicates the formation of PbTe. Compound 4 shows a
gradual mass loss in the temperature range of 100 to 300 1C with
a shoulder at 190 1C. The overall mass loss is 55.1%, which fits
roughly to the formation of PbTe (calc. 57.4%). Finally, the
thermal decomposition of cluster compound 5 was investigated.
However, in all experiments under helium gas flow as well as
under vacuum, 5 shows a mass loss much larger than expected for
the formation of SnTe: calc. 55.8%, observed under helium gas
flow 61.8% and 71.2% under vacuum.
73, 1148–1156; (d) M. Bjorgvinsson, H. P. A. Mercier, K. M. Mitchell,
¨
G. J. Schrobilgen and G. Strobe, Inorg. Chem., 1993, 32, 6046–6055;
(e) M. Bjorgvinsson, J. F. Sawyer and G. Schrobilgen, Inorg. Chem.,
¨
G. J. Schrobilgen, Inorg. Chem., 1987, 26, 741–749.
¨
1991, 30, 2231–2233; (f) M. Bjorgvinsson, J. F. Sawyer and
7 A. Eichhofer, J.-J. Jiang, H. Sommer, F. Weigand, O. Fuhr,
¨
D. Fenske, C.-Y. Su and G. Buth, Eur. J. Inorg. Chem., 2010, 410–418.
´ ´
8 M. Bouska, L. Dostal, Z. Padekova, A. Lycka, S. Herres-Pawlis,
K. Jurkschat and R. Jambor, Angew. Chem., 2012, 124, 3535–3540
(Angew. Chem., Int. Ed., 2012, 51, 3478–3482).
9 (a) C. Eaborn and J. D. Smith, Coord. Chem. Rev., 1996, 154, 125–149;
(b) C. Eaborn and J. D. Smith, Dalton Trans., 2001, 1541–1552;
(c) Organic Functional Group Transformations, ed. A. R. Katritzky
and R. J. K. Taylor, Elsevier, Pergamon, Amsterdam, 1995, vol. 6,
pp. 377–406; (d) Organic Functional Group Transformations II, ed.
A. R. Katritzky and R. J. K. Taylor, Elsevier Pergamon, Amsterdam,
2005, vol. 6, pp. 381–408.
Organosilicon tellanes are possible precursors to obtain
telluro-bridged compounds of tin and lead. The uncommon
multinuclear complex 5 can be described as part of the cubic SnTe
and gives insight into the formation of solid states from molecular
precursors. Apart from the Sn–Te system with compounds 3 and 4,
we succeeded in synthesizing and structurally characterizing two
stable compounds containing lead–tellurium bonds. Moreover,
such compounds are promising single source precursors for
SnTe and PbTe as thermoelectric materials.
10 T. Kuckmann, M. Hermsen, M. Bolte, M. Wagner and H.-W. Lerner,
¨
Inorg. Chem., 2005, 44, 3449–3458.
11 S. Traut, A. P. Hahnel and C. v. Hanisch, Dalton Trans., 2011, 40,
1365–1371.
¨
¨
12 P. Bonasia, D. Gindelbert, B. Dabbousi and J. Arnold, J. Am.
Chem. Soc., 1992, 114, 5209–5214.
13 P. Pyykko and M. Atsumi, Chem.–Eur. J., 2009, 15, 186–197.
¨
14 The H NMR spectrum of compound 3 shows at room temperature
1
one signal of the tBu groups at 1.26 ppm. At a temperature of ꢀ50 1C
two additional signals appear at 1.11 and 1.34 ppm. These signals
increase in intensity when the sample is cooled to lower temperatures,
while the signal at 1.26 ppm decreases.
The authors thank Dr Klaus Harms (Philipps Universitat
¨
Marburg) for the help concerning the X-ray structure analysis.
15 C. Eaborn, P. B. Hitchcock, J. D. Smith and S. E. So
Organometallics, 1997, 16, 5653–5658.
¨
zerli,
Notes and references
16 (a) A. Bondi, J. Phys. Chem., 1964, 68(3), 441–451; (b) M. Mantina,
A. Chamberlin, R. Valero, C. Cramer and D. Truhlar, J. Phys.
Chem. A, 2009, 113, 5806–5812.
17 STOE-IPDS 2 (Mo-Ka radiation, l = 0.71073 A). The structure
was resolved by direct methods and refined against F2 by the full-
matrix least-squares technique (Pb, Te, Sn, Si, and C were refined
anisotropically, H atoms were calculated at ideal positions).
1 (a) J. S. Ritch, T. Chivers, K. Ahmad, M. Afzaal and P. O’Brien,
Inorg. Chem., 2010, 49, 1198–1205; (b) T. Mokari, M. Thang and
P. Yang, J. Am. Chem. Soc., 2007, 129, 9864–9865; (c) J. Murphy,
M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C- Johnson, P. Yu,
´ ´
O. I. Micic, R. J. Ellingon and A. J. Nozik, J. Am. Chem. Soc.,
2006, 128, 3241–3247; (d) W. Lu, J. Fang, K. L. Stokes and J. Lin,
c
6986 Chem. Commun., 2012, 48, 6984–6986
This journal is The Royal Society of Chemistry 2012